首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The kinetics of continuous oxidation of ferrous iron by immobilized cells of Thiobacillus ferrooxidans was studied in a packed-bed bioreactor. Polyurethane foam biomass support particles were used as carriers for cell immobilization. Effects of ferrous iron concentration and its volumetric loading on the kinetics of the reaction were investigated. Media containing different concentrations of ferrous iron in the range 5–20 kg m-3 were tested. For each medium the kinetics of the reaction at different volumetric loadings of ferrous iron, at a constant temperature of 30°C, were determined. With media containing 5 kg m-3 and 10 kg m-3 Fe2+, the fastest oxidation rates of 34.25 kg m-3 h-1 and 32 kg m-3 h-1 were achieved at a dilution rate of around 6 h-1, which represents a residence time of 10 min. Employing a higher concentration of ferrous iron (20 kg m-3) in the medium resulted in lower oxidation rates, with a maximum value of 10 kg m-3 h-1, indicating an inhibitory effect of ferrous iron on growth and activity of T. ferrooxidans. The reliable performance of the bioreactor during the course of the experiments confirmed the suitability of polyurethane foam biomass support particles as carriers for T. ferrooxidans immobilization. Received: 5 December 1995/Received revision: 21 April 1996/Accepted: 29 April 1996  相似文献   

2.
 The transition rate kinetics from ethanol oxidation to glucose utilisation, within a structured model of baker’s yeast, described previously, were experimentally identified. The shift in metabolism has been assessed through glucose pulses during batch growth on ethanol. The influence of glucose concentration (between 0.25 g l-1 and 0.90 g l-1) and initial biomass concentration (between 0.61 g l-1 and 1.44 g l-1) on the transition rate was determined. The transition rate can not be described by a first-order saturation-type kinetics with respect to glucose only. A corrective term, which takes into account biomass concentration should be included. Received: 28 April 1995/Received revision: 6 July 1995/Accepted: 22 August 1995  相似文献   

3.
 Our isolate, Pseudomonas putida, is known to be capable of utilizing cyanides as the sole source of carbon (C) and nitrogen (N) both in the form of free cells and cells immobilized in calcium alginate. In the present study, the cell-free extract(s) were prepared from the cells of P. putida grown in the presence of sodium cyanide. The ability of enzyme(s) to convert cyanides, cyanates, thiocyanates, formamide and cyanide-containing mine waters into ammonia (NH3) was studied at pH 7.5 and pH 9.5. The kinetic analysis of cyanide and formamide conversion into NH3 at pH 7.5 and pH 9.5 by the cell-free extract(s) of P. putida was also studied. The K m and V max values for cyanide/formamide were found to be 4.3/8 mM and 142/227 μmol NH3 released mg protein-1 min-1 respectively at pH 7.5 and 5/16.67 mM and 181/434 μmol NH3 released mg protein-1 h-1 respectively at pH 9.5. The study thus concludes that the cell-free extract(s) of P. putida is able to metabolize not only cyanides, cyanates, thiocyanates, and formamide but also cyanide-containing mine waters to NH3. Received: 10 April 1995/Received revision: 24 July 1995/Accepted: 22 August 1995  相似文献   

4.
 The cyanobacterium, Aphanocapsa halo-phytia MN-11, was immobilized in calcium alginate gel and coated on light-diffusing optical fibers (LDOF) for sulfated extracellular polysaccharide production. Results indicated that sulfated extracellular polysaccharide production depends on the number of immobilized cells and the light intensity. In addition, the production rate reached 116.0 mg (mg dry cells)-1 day-1 when the cells that were immobilized on LDOF were incubated under a light intensity of 1380 cd sr m-2 at a cell concentration of 1.0×108 cells/cm3 gel. Cells immobilized on LDOF produced about ten times more sulfated extracellular polysaccharide than those immobilized in calcium alginate beads only (11.7 mg(mg dry cells)-1 day-1). Received: 31 March 1995/Revised last revision 12 June 1995/Accepted 26 July 1995  相似文献   

5.
Chlorinated propanes are important pollutants that may show persistent behaviour in the environment. The biotransformation of 1-chloropropane, 1,2-dichloropropane, 1,3-dichloropropane and 1,2,3-trichloropropane was studied using resting cell suspensions of Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. The transformation followed first-order kinetics. The rate constants were in the order 1-chloropropane > 1,3-dichloropropane > 1,2-dichloropropane > 1,2,3-trichloropropane, and varied from 0.07 to 1.03 ml min−1 mg of cells−1 for 1,2,3-trichloropropane and 1-chloropropane respectively. Turnover-dependent inactivation occurred for all of the chloropropanes tested. The inactivation constants were lower for 1-chloropropane and 1,2-dichloropropane than for 1,2,3-trichloropropane and 1,3-dichloropropane. Not all the chloride was released during cometabolic transformation of the chlorinated propanes and production of monochlorinated- and dichlorinated propanols was found by gas chromatography. The reaction pathway of 1,2,3-trichloropropane conversion was studied by mass spectrometric analysis of products formed in 2H2O, which indicated that 1,2,3-trichloropropane was initially oxidized to 2,3-dichloropropionaldehyde and 1,3-dichloroacetone, depending on whether oxygen insertion occurred on the C-3 or C-2 carbon of 1,2,3,-trichloropropane, followed by reduction to the corresponding propanols. The results show that chloropropanes are susceptible to cometabolic oxidation by methanotrophs, but that the transformation kinetics is worse than with cometabolic conversion of trichloroethylene. Received: 27 November 1997 / Received revision: 27 February 1998 / Accepted: 27 February 1998  相似文献   

6.
In vitro pollen germination and tube length studies are valuable in elucidating mechanisms (germination capacity and rate, tube growth rate) possibly associated with genetic differences in male transmission. On each of two collection dates, the percentage germination and tube length of the binucleate pollen grains from five diverse sesame (Sesamum indicum L.) genotypes were determined at eight times (30, 60, 90, 120, 150, 180, 240, 300 min) after inoculation on a semisolid medium containing 10% (100 g l-1) sucrose (C12H22O11), 0.4% (4 g l-1) purified agar (Fisher Lot 914409), 0.1% (1 g l-1) calcium nitrate [Ca(NO3)2 ⋅ 4H2O] and 0.01% (100 mg l-1) boric acid (H3BO3). Before heating, the pH of the medium was adjusted to 7.0 with a 0.1 N potassium hydroxide (KOH) solution. Over the five genotypes, 5% germination was found 30 min after inoculation and a maximum of 37% germination 120 min after inoculation with no significant changes thereafter. As indicated by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which germination was initiated and maximum germination attained. Over all five genotypes, the tube length was 91 μm 30 min after inoculation, reaching a maximum of 1000 μm 300 min after inoculation. As shown by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which tube length was observed and the maximum tube length was attained. Little or no relationship between percent germination and tube length was observed among the genotypes. For both percent germination and tube length, the statistical significance of collection date and its interactions with genotype and time after inoculation indicated that environment in the form of collection date was also an influencing factor. These results indicated that genetic differences among genotypes were present for in vitro germination capacity, germination rate and tube growth rate and that these factors singly or in combination could alter male transmission of genetic elements. Received: 5 February 1997 / Accepted: 23 June 1997  相似文献   

7.
 Large-scale exploitation of the potential benefits of ectomycorrhizal fungi in improving plantation yields means that fermentation techniques for these fungi will be required. Starting with a base performance on a rich, complex medium, the effect of variations in some physicochemical culture parameters on biomass yield was studied. It was possible to reduce the amount of phosphate salts (to 1/9th) and other ingredients (to 1/3rd) in the medium. A shaking speed of either 100 rpm or 200 rpm in an orbital incubator was satisfactory and biomass yield responded to an increase in carbon substrate (glucose, from 10 g l-1 and 20 g l-1) though Y x/s declined. An increase in inoculum size shortened culture time but decreased biomass yield. The upper limit of the incubation temperature was between 25°C and 30°C. Biomass yields were about 12 g l-1 dry weight (Y x/s=0.63) when 20 g l-1 glucose was supplied, and about 7 g l-1 (Y x/s=0.74) when 10 g l-1 glucose was supplied. Received: 9 October 1995/Accepted: 4 December 1995  相似文献   

8.
 Low elimination capacities (less than 10 g m-3 day-1) were observed for the odorant dimethyl sulphide (Me2S) when either wood bark or compost was used as the carrier material in a laboratory-scale biofilter. Enrichment experiments were set up by incubation of garden soil samples during 4 weeks with 100 ppm (v/v) headspace concentrations of both Me2S and dimethyl disulphide (Me2S2). After transfer to a mineral medium, Me2S- and Me2S2-degrading enrichment cultures were obtained for all five soil samples tested, both compounds being converted stoichiometrically to sulphuric acid. Upon inoculation of the laboratory-scale biofilter with one of these enrichment cultures (±120 g cell dry weight m-3 reactor), the elimination capacity for Me2S increased in a 3-week period to 35 g m-3 day-1 and 680 g m-3 day-1 when wood bark and compost were used as the respective carrier materials. Both inoculated biofilters were able to degrade Me2S2, however the elimination capacities obtained for Me2S2 were lower (e.g. 24 g m-3 day-1 for the wood bark filter) compared to those for Me2S. For both inoculated biofilters, a gradual decrease of the elimination capacity for the methyl sulphides was observed as a result of acidification of the carrier material, suggesting that pH regulation is necessary if long-term biofiltration experiments are to be performed. Received: 6 June 1995/Received revision: 10 August 1995/Accepted: 22 August 1995  相似文献   

9.
 Amperometric biosensors for naphthalene were developed using either immobilized Sphingomonas sp. B1 or Pseudomonas fluorescens WW4 cells. The microorganisms were immobilized within a polyurethane-based hydrogel, which was used for a microbial biosensor for the first time. Both strains were shown to be equally suited for the quantification of naphthalene in aqueous solutions. The biosensors were tested in a flow-through system and a stirred cell (batch method). In both systems a linear response down to the detection limit was obtained. Measurements in the flow-through system gave sensitivities of up to 1.2 nA mg−1 l−1 and a linear range from 0.03 mg/l to 2.0 mg/l. The response time (t 95) was 2 min and the sample throughput six per hour; the repeatability was within ±5 %. With the batch method, sensitivities of between 3 nA mg−1 l−1 and 5 nA mg−1l−1 and a linear range of 0.01–3.0 mg/l were obtained; the response time was between 3 min and 5 min. The sensors reached an operational lifetime of up to 20 days. The sensitivity of both sensors for naphthalene was, in most cases, more than four times higher than for various other substrates. Received: 18 October 1995/Received revision: 22 December 1995/Accepted: 22 January 1996  相似文献   

10.
 Two homofermentative strains, Lactobacillus casei NRRL B-441 and Lactobacillus casei subsp. rhamnosus NRRL B-445 were selected for further study from 17 lactic acid bacterial strains screened for lactic acid production. The effect of temperature on lactic acid production with the selected strains was investigated by adapting both strains to four different temperatures. The production of L(+)-lactic acid by both strains was most efficient at 37°C, although with L. casei the highest lactic acid concentration was obtained at 41°C. The maximal volumetric productivity with L. casei was 4.1 g l-1 h-1 and with L. casei subsp. rhamnosus 3.5 g l-1 h-1. The composition of the medium was studied in order to replace the costly yeast extract with less expensive sources of nitrogen and amino acids. From 11 different nitrogen sources investigated at 37°C, barley malt sprouts (88 g l-1 lactic acid in 66 h) and grass extract (74 g l-1 lactic acid in 73 h) were the best economic alternatives. The effect of different combinations of yeast extract, peptone and malt sprouts was further studied by using statistical experimental design, and an empirical second-order polynomial model was constructed on the basis of the results. With the right combination most of the yeast extract could be substituted by barley malt sprouts for efficient lactic acid production. A method for extraction of nutrients and growth factors from malt sprouts is also described. Received: 25 September 1995/Accepted: 24 October 1995  相似文献   

11.
 The synthesis of poly(3-hydroxyalkanoates) (PHA) by Pseudomonas putida KT2442 growing on long-chain fatty acids was studied in continuous cultures. The effects of the growth rate on the biomass and polymer concentration were determined and it was found that the PHA concentrations decreased with increasing growth rates. The highest volumetric productivity was 0.13 g PHA l-1 h-1 at a specific growth rate (μ) of 0.1 h-1. The molecular mass of the polymer remained constant at all growth rates but changes in the monomeric composition of the PHA synthesized were observed. Variation of the carbon to nitrogen (C/N) ratio of the substrate feed at μ=0.1 h-1 revealed optimal PHA formation at C/N=20 mol/mol. In order to optimize PHA production P. putida KT2442 was cultivated to high cell densities in oxygen-limited continuous cultures. In this way a maximum biomass concentration of 30 g/l containing approximately 23% PHA was achieved. This corresponds to a volumetric productivity of 0.69 g  l-1 h-1. Received: 14 December 1995 / Received revision: 18 April 1996 / Accepted: 22 April 1996  相似文献   

12.
 Degradation of tetrachloroethene (perchloroethylene, PCE) was investigated by combining the metabolic abilities of anaerobic bacteria, capable of reductive dechlorination of PCE, with those of aerobic methanotrophic bacteria, capable of co-metabolic degradation of the less-chlorinated ethenes formed by reductive dechlorination of PCE. Anaerobic communities reductively dechlorinating PCE, trichloroethene (TCE) and dichloroethenes were enriched from various sources. The maximum rates of dechlorination observed for various chloroethenes in these batch enrichments were: PCE to TCE (341 μmol l-1 day-1), TCE to cis-dichloroethene (159 μmol l-1 day-1), cis-dichloroethene to chloroethene (99 μmol l-1 day-1) and trans-dichloroethene to chloroethene (22 μmol l-1 day-1). A mixture of these enrichments was inoculated into an anoxic fixed-bed upflow column. In this column PCE was converted mainly into cis-1, 2-dichloroethene, small amounts of TCE and chloroethene, and chloride. Enrichments of aerobic methanotrophic bacteria were grown in an oxic fixed-bed downflow column. Less-chlorinated ethenes, formed in the anoxic column, were further metabolized in this oxic methanotrophic column. On the basis of analysis of chloride production and the disappearance of chlorinated ethenes it was demonstrated that complete degradation of PCE was possible by combining these two columns. Operation of the two-column system under various process conditions indicated that the sensitivity of the methanotrophic bacteria to chlorinated intermediates represented the bottle-neck in the sequential anoxic/oxic degradation process of PCE. Received: 24 October 1994 / Received revision: 20 January 1995 / Accepted: 23 January 1995  相似文献   

13.
 Continuous production of lactic acid from lactose has been carried out in a stirred-tank reactor with non-growing Lactobacillus helveticus entrapped in calcium alginate beads. A considerably longer operation half-life was obtained in a continuously operated reactor than in a batch-operated reactor. It is possible to simulate the action of entrapped non-growing cells on the basis of information from diffusion and kinetic experiments with suspended free cells. The simulation fit the experimental data over a broad range of substrate concentrations if the specific lactic acid production rate, q P, was used as a variable parameter in the model. The dynamic mathematical model used is divided into three parts: the reactor model, which describes the mass balance in a continuously operated stirred-tank reactor with immobilized biomass, the mass-transfer model including both external diffusion and internal mass transfer, and the kinetic model for uptake of substrate on the basis of a Michaelis-Menten-type mechanism. From kinetic data obtained for free biomass experiments it was found, with the use of non-linear parameter estimation techniques, that the conversion rate of lactose by L. helveticus followed a Michaelis-Menten-type mechanism with K S at half-saturation=0.22±0.01 g/l. The maximum specific lactose uptake rate for growing cells, q S,max, varied between 4.32±0.02 g lactose g cells-1 h-1 and 4.89 ±0.02 g lactose g cells-1 h-1. The initial specific lactose uptake rate for non-growing cells, q S,0, was found to be approximately 40% of the maximum specific lactose uptake rate for growing cells. Received: 4 October 1995/Received last revision: 23 April 1996/Accepted: 29 April 1996  相似文献   

14.
 Electrogenic cation transport across the caecal epithelium of the leech Hirudo medicinalis was investigated using modified Ussing chambers. Transepithelial resistance (R T ) and potential difference (V T ) were 61.0±3.5 Ω ⋅ cm2 and −1.1±0.2 mV (n=149), respectively, indicating that leech caecal epithelium is a “leaky” epithelium. Under control conditions short circuit current (I SC ) and transepithelial Na+ transport rate (I Na ) averaged at 22.1±1.5 μA ⋅ cm-2 and 49.7±2.6 μA ⋅ cm-2, respectively. Mucosal application of amiloride (100 μmol ⋅ l-1) or benzamil (50 μmol ⋅ l-1) influenced neither I SC nor I Na . The transport system in the apical membrane showed no pronounced cation selectivity and a linear dependence on mucosal Na+ concentration. Removal of mucosal Ca2+ increased I SC by about 50% due to an increase of transepithelial Na+ transport. Trivalent cations (La3+ and Tb3+, 1 mmol ⋅ l-1 both) added to the mucosal Ringer solution reduced I Na by more than 40%. Serosal ouabain (1 mmol ⋅ l-1) almost halved I SC and I Na while 0.1% (=5.4 mmol ⋅ l-1) DNP decreased I Na to 11.8±5.1% of initial values. Serosal addition of cAMP increased both I SC and I Na whereas the neurotransmitters FMRFamide, acetylcholine, GABA, L-dopa, serotonin and dopamine failed to show any effects; octopamine, glycine and L-glutamate reduced I Na markedly. On the basis of these results we conclude that in leech caecal epithelium apical uptake of monovalent cations is mediated by non-selective cation conductances which are sensitive to extracellular Ca2+ but insensitive to amiloride. Basolaterally Na+ is extruded via ouabain-sensitive and -insensitive ATPases. cAMP activates Na+ transport across leech caecal epithelium, although the physiological stimulus for cAMP-production remains unknown. Accepted: 20 May 1996  相似文献   

15.
 To examine the trichloroethylene (C2HCl3)-degrading capability of five microorganisms, the maximum rate, extent, and degree of C2HCl3 mineralization were evaluated for Pseudomonas cepacia G4, Pseudomonas cepacia G4 PR1, Pseudomonas mendocina KR1, Pseudomonas putida F1, and Methylosinus trichosporium OB3b using growth conditions commonly reported in the literature for expression of oxygenases responsible for C2HCl3 degradation. By varying the C2HCl3 concentration from 5 μM to 75 μM, V max and K m values for C2HCl3 degradation were calculated as 9 nmol/(min mg protein) and 4 μM for P. cepacia G4, 18 nmol/(min mg protein) and 29 μM for P. cepacia G4 PR1, 20 nmol/(min mg protein) and 10 μM for P. mendocina KR1, and 8 nmol/(min mg protein) and 5 μM for P. putida F1. This is the first report of these Michaelis-Menten parameters for P. mendocina KR1, P. putida F1, and P. cepacia G4 PR1. At 75 μM, the extent of C2HCl3 that was degraded after 6 h of incubation with resting cells was 61%–98%; the highest degradation being achieved by toluene-induced P. mendocina KR1. The extent of C2HCl3 mineralization in 6 h (as indicated by concentration of chloride ion) was also measured and varied from 36% for toluene-induced P. putida F1 to 102% for M. trichosporium OB3b. Since C2HCl3 degradation requires new bio-mass, the specific growth rate (μmax) of each of the C2HCl3-degradation microorganisms was determined and varied from 0.080/h (M. trichosporium OB3b) to 0.864/h (P. cepacia G4 PR1). Received: 1 May 1995/Received revision: 11 July 1995/Accepted: 26 July 1995  相似文献   

16.
Streptococcus salivarius subsp. thermophilus was cultivated in a chemostat in order to obtain an adhesive phenotype of this strain. When the system was operated at low dilution rates (D<0.2 h-1) for about 4 weeks, the strain formed a visible film on the surface of the culture vessel. The biofilm cells were not washed out even when dilution rates were increased (D=6.9 h-1), and this resulted in a high biomass productivity (P=4.1 g l-1h-1). On the other hand, when the culture was grown at dilution rates faster than 0.2 h-1, only the free suspended cells were present in the culture broth, and were washed out at velocities of about 1.0 h-1. The biomass productivity was consequently lower (P=1.33 g l-1h-1) than in the previous case. The selected adhesive phenotype was grown on different glass beads and the possibility of lactate fermentation in a continuous and semicontinuous mode was demonstrated. Received: 16 August 1995/Received revision: 18 March 1996/Accepted: 25 March 1996  相似文献   

17.
 Pure and mixed cultures of Zymomonas mobilis and Saccharomyces sp. were tested for the production of ethanol using sucrose as the carbon source. Both strains, isolated from spontaneously fermenting sugar-cane juice, are flocculent and alcohol-tolerant. The best results were obtained using a mixed culture, with a yield of 0.5 g ethanol/g sugar consumed and a volumetric productivity of 1.5 g ethanol l-1 h-1. No levan was produced even if a sucrose-based medium was used. Received: 20 April 1995/Received revision: 26 July 1995/Accepted: 13 September 1995  相似文献   

18.
Saccharomyces cerevisiae cells were immobilized on preformed cellulose beads by adsorption. The fermentation capacity of the immobilized yeast cells was found to be practically independent of the hydrogen ion concentration between pH 3.1 and 6.25. The fermentation capacity was maximal at 30 °C. The immobilized yeast cells were used for continuous production of ethanol in a fluidized-bead reactor. The average values characteristic for the process were an ethanol concentration of 41.9±0.1 g l-1, a fermentation efficiency of 82.9±2.1% and a volumetric productivity of 3.94±0.52 g l-1 h-1. Received: 9 October 1995/Accepted: 22 April 1996  相似文献   

19.
 In order to investigate the cellular mechanisms involved in amylase release in response to stimulation with short-chain fatty acids, changes in intracellular calcium concentration ([Ca2+]i), membrane current and amylase release were measured in pancreatic acinar cells of sheep. Both octanoate and acetylcholine raised [Ca2+]i in acinar cells in a concentration-dependent manner. The rise in [Ca2+]i in response to the stimulation with octanoate (10 mmol ⋅ l-1) was reduced in a medium without CaCl2, but was markedly enhanced by reintroduction of CaCl2 into the medium up to 2.56 mmol ⋅ l-1. Perfusion of the cells with a medium containing octanoate (5 mmol ⋅ l-1) or acetylcholine (0.5 μmol ⋅ l-1) immediately raised inward current across the cell membrane at a holding-membrane potential of −30 mV. The inward current became greater as the holding potential became more negative. The equilibrium potential was 1.8 mV and 3.9 mV for octanoate and acetylcholine, respectively, being consistent with that for Cl-. Although intracellular application of octanoate through a patch-clamp pipette also raised inward current after several minutes in some cells (4 out of 12), this possibility was significantly smaller than that for extracellular application. In other cells, even though the intracellular application of octanoate did not cause an increase in current, it always caused responses immediately after introduction of the fatty acid into the medium. Stimulation with fatty acid as well as acetylcholine raised amylase release in a concentration-dependent manner in cells dispersed from tissue segments with crude collagenase and trypsin inhibitor. Without trypsin inhibitor, crude collagenase significantly and selectively reduced the octanoate (10 mmol ⋅ l-1)-induced amylase release. Dispersion with crude collagenase and trypsin significantly reduced both responses induced by octanoate and acetylcholine (5.5 μmol ⋅ l-1). We conclude that fatty acids and acetylcholine increase [Ca2+]i, which consequently evokes a rise in transmembrane ion (Cl-) conductance and amylase release, and that trypsin-sensitive protein(s) in the cell membrane are involved in secretory processes activated by stimulation with fatty acids in ovine pancreatic acinar cells. Accepted: 14 May 1996  相似文献   

20.
 Phytoplankton biomass, community structure and productivity of the Great Astrolabe lagoon and surrounding ocean were studied using measurements of chlorophyll concentration and carbon uptake. The contribution of picophytoplankton to biomass, productivity and community structure was estimated by size fractionation, 14C-incubation and flow cytometry analysis. Picoplankton red fluorescence was demonstrated to be a proxy for chlorophyll <3 μm. Consequently, the percentage contribution to chl a<3 μm from each picoplankton group could be calculated using regression estimated values of ψ i (fg chl a per unit of red fluorescence). In the lagoon, average chlorophyll concentration was 0.8 mg m-3 with 45% of phytoplankton <3 μm. Primary production reached 1.3 g C m-2 day-1 with 53% due to phytoplankton <3 μm. Synechococcus was the most abundant group at all stations, followed by Prochlorococcus and picoeukaryotes. At all stations, Prochlorococcus represented less than 4% of the chl a <3 μm, Synechococcus between 85 and 95%, and Picoeukaryotes between 5 and 10%. In the upper 40 m of surrounding oceanic waters, phytoplankton biomass was dominated by the >3 μm size fraction. In deeper water, the <1 μm size fraction dominated. Prochlorococcus was the most abundant picoplankton group and their contributions to the chlorophyll a<3 μm were close to that of the picoeukaryotes (50% each). Accepted: 27 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号