首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat liver microsomal enzyme CTP: phosphatidate cytidylyltransferase (EC 2.7.7.41) which catalyzes the formation of CDP-diacylglycerol has been found to be markedly stimulated by GTP. The requirement for GTP is absolute, the novel GTP analogues such as guanosine 5′-[β,γ-methylene]-triphosphate, guanosine 5′-[α,β-methylene]-triphosphate, guanosine 5′-[β,γ-imido]-triphosphate and guanosine 3′-diphosphate 5′-diphosphate are without significant effect. Maximal stimulation occurs at 1 mM GTP. ATP at a concentration of 5 mM totally inhibits the formation of CDP-diacylglycerol even in the presence of optimal GTP concentration. Analogues of ATP such as adenosine 5′-[α,β-methylene]-triphosphate, adenosine 5′-[β,γ-methylene]-triphosphate and adenosine 5′-[β,γ-imido]-triphosphate are without effect on the reaction. The addition of fluoride (8 mM) likewise abolishes the stimulatory effect of GTP.  相似文献   

2.
A rapid method for the preparation of [β-32P]ribonucleoside-5′-triphosphates is described. The method involves the incubation of a ribonucleoside triphosphate with 32Pi and E. coli cells made permeable to nucleotides. The labeled triphosphates can be isolated by preparative thin layer chromatography on poly(ethylene)imine cellulose plates. Labeled GTP, CTP, and UTP obtained by this method are more than 99% pure [β-32P]compounds. Labeled ATP contains about equal amounts of label in the β- and γ-phosphate position. Pure [β-32P]ATP can be obtained from this preparation by exchanging the γ-32P against unlabeled Pi and reisolating the labeled ATP by charcoal adsorption and elution.  相似文献   

3.
We have synthesised dideoxyadenosine-5′-[α-32P]triphosphate ([α-32P]ddATP) at a specific activity of 3000 Ci/mmol and directly compared it with cordycepin-5′-[α-32P]triphosphate ([α-32P]KTP) as a means to 3′-end label DNA. The [α-32P]ddATP was found to be three to five times more efficient than [α-32P]KTP. Blunt and 3′-protruding ends were labelled more efficiently with [α-32P]ddATP using terminal transferase than were the 5′-ends with [γ-32P]ATP using polynucleotide kinase by standard methods. This improvement in efficiency of labelling DNA and the simplicity of the method allows 3′-end labelling of DNA to become a realistic alternative to 5′-end labelling. We have also compared [α-32P]ddATP- and [α-32P]KTP-labelled DNA in Maxam and Gilbert sequencing procedures and find that both give equally good results.  相似文献   

4.
Abstract

An enzymatic method was developed for the preparation of unlabeled and [β-32P]-labeled β-L-2′,3′-dd-5′ATP from the monophosphate with near quantitative yields. β-L-2′,3′-dd-5′ATP was a competitive and potent inhibitor of adenylyl cyclases (IC5 ~ 30 nM). Upon uvirradiation β-L-2′,3′-dd-[β-32P]-5′ATP directly crosslinked to a chimeric construct of this enzyme. Data suggest that this is a pre-transition state inhibitor and contrasts with the equipotent 2′,5′-dd-3′ATP, a post-transition state, noncompetitive inhibitor.  相似文献   

5.
6.
Kent SS  Young JD 《Plant physiology》1980,65(3):465-468
An assay was developed for simultaneous kinetic analysis of the activities of the bifunctional plant enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase [EC 4.1.1.39]. [1-14C,5-3H]Ribulose 1,5-bisphosphate (RuBP) was used as the labeled substrate. Tritium enrichment of the doubly labeled 3-phosphoglycerate (3-PGA) product, common to both enzyme activities, may be used to calculate Vc/Vo ratios from the expression A/(B-A) where A and B represent the 3H/14C isotope ratios of doubly labeled RuBP and 3-PGA, and Vc and Vo represent the activities of carboxylase and oxygenase, respectively. Doubly labeled substrate was synthesized from [2-14C]glucose and [6-3H]glucose using the enzymes of the pentose phosphate pathway coupled with phosphoribulokinase.  相似文献   

7.
A satisfactory method for the determination of the specific activity of highly labeled [γ-32P]ATP has not been reported previously. Yields of high specific activity 32P labeled material usually are too small to be detected by ultraviolet spectrophotometry or phosphate analysis. Recent reports describing the assay of ATP by enzyme catalyzed phosphate transfer to 3H labeled glucose (1) or galactose (2) are not suitable for use with highly labeled 32P material since the crossover into the 3H channel will greatly exceed the radioactivity of the 3H labeled phosphate acceptor. Recently Schendel and Wells reported the preparation of essentially carrier free [γ-32P]ATP. They indicated, however, that the specific activity of the labeled product could not be determined by conventional methods (3). We have developed and now routinely use an expedient method for the determination of the specific activity of picomole quantities of highly labeled [γ-32P]ATP. This procedure measures the phosphate transfer from [γ-32P]ATP to oligothymidylic acid [dT(pT)10] catalyzed by bacteriophage T4 induced polynucleotide kinase. The specific activity is determined by measuring the radioactivity present in d-32pT(pT)10, and can be verified by an isotope dilution method employing the same assay. Specific activities as high as 240 Ci/mmole have been determined.  相似文献   

8.
In the assay of adenylate cyclase using [α-32P]ATP as the substrate and alumina chromatography as the separating procedure for labeled nucleotides, blank levels are dependent on the quality of the labeled ATP and also on that of the alumina. In order to lower the blanks by eliminating the radioactive material contaminating the commercial [α-32P]ATP preparations, the following treatment is proposed: The reaction mixture resulting from the incubation is heated for 4 min at 95°C in 0.165 n HCl, then it is chromatographed on a selected alumina (Woelm) column. In the conditions used, cyclic AMP was unaffected, while blank values were low. The detection limit of [32P]cyclic AMP was thus higher and the precision of enzyme activity determination was improved, while the advantages of one-step chromatography were retained.  相似文献   

9.
When mouse liver homogenates were incubated with [α-32P]-CTP according to the method of Cech and Ignarro (4,5), a [32P] product (100–120 pmoles/mg protein/minute) was isolated by chromatography on alumina column, in the same fraction as [3H]-cyclic CMP.1 However this product did not behave as cyclic CMP in various chromatographic systems. Moreover the amount of this [32P] product isolated was markedly reduced by removal of protein prior to chromatography on alumina. Chromatography of the enzymatic reaction product either before or after alumina purification on Dowex 1 — formate column indicated that 5′-CMP and CDP are the major products, with no formation of cyclic CMP. These results indicate that the [32P] labeled material isolated by Cech and Ignarro is mainly if not entirely 5′-CMP and CDP.  相似文献   

10.
The catalysis by rat liver microsomes under anaerobic conditions, of the conversion of [3α-3H]14α-methyl-5α-cholest-7-en-3β-ol and of [2,4-3H]14α-hydroxymethyl-5α-cholest-7-en-3β-ol to labeled 14α-methyl-5α-cholest-8-en-3β-ol and 14α-hydroxymethyl-5α-cholest-8-en-3β-ol, respectively, has been demonstrated. This finding is of importance in evaluating past research in this area and in consideration of pathways and mechanisms involved in enzymatic removal of carbon atom 32 of 14α-methyl sterols. Also described herein are syntheses of [2,4-3H]14α-hydroxymethyl-5α-cholest-7-en-3β-ol and 3β-acetoxy-14α-methyl-5α-cholest-8-ene.  相似文献   

11.
Abstract

5-O-tert-Butyldimethylsilyl-1,2-O-isopropylidene-3(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose (11a) and ?3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (11b) were prepared by condensation of 5-O-tert-butyldimethylsilyl-1,2-O-isopropylidene-α-D-erythro-3-pentulofuranose (10) with lithiated (LDA) 2-methylnicotinamide and 6-methylnicotinamide, respectively, and then deprotected to give 1,2-O-isopropylidene-3-(R)-(nicotinamid-2-ylmethyl)-α-D-ribofuranose(12a) and 1,2-O-isopropylidene-3(R)-(nicotinamid-6-ylmethyl)-α-D-ribofuranose (12b). Benzoylation as well as phosphorylation of compounds 12 afforded the corresponding 5-O-benzoate (13b) and 5-O-monophosphates (14a and 14b). Treatment of 13b with CF3COOH/H2O caused 1,2-de-O-isopropylidenation with simultaneous cyclization to the corresponding methylene-bridged cyclic nucleoside - 3′,6-methylene-1-(5-O-benzoyl-β-D-ribofuranose)-3-carboxamidopyridinium trifluoro-acetate (8b) - restricted to the “anti” conformation. In a similar manner compounds 14a and 14b were converted into conformationally restricted 2,3′-methylene-1-(β-D-ribofuranose)-3-carboxamidopyridinium-5′-monophosphate (9a - “syn”) and 3′,6-methylene-1-(β-D-ribofuranose)-3-carboxamido -pyridinium-5′monophosphate (9b - “anti”) respectively. Coupling of derivatives 12a and 12b with the adenosine 5′-methylenediphosphonate (16) afforded the corresponding dinucleotides 17. Upon acidic 1,2-de-O-isopropylidenation of 17b, the conformationally restricted P1-[6,3′-methylene-1-(β-D-ribofuranos-5-yl)-3-carboxamidopyridinium]-P2-(adenosin-5′-yl)methylenediphosphonate 18b -“anti” was formed. Compound 18b was found to be unstable. Upon addition of water 18b was converted into the anomeric mixture of acyclic dinucleotides, i. e. P1-[3(R)-nicotinamid-6-ylmethyl-D-ribofuranos-5-yl]-P2-(adenosin-5′-yl)-methylenediphosphonate (19b). In a similar manner, treatment of 17a with CF3COOH/H2O and HPLC purification afforded the corresponding dinucleotide 19a.

  相似文献   

12.
An extremely sensitive and specific analytic procedure is described for quantitating 1,2-diacylglycerol (DAG). Escherichia coli DAG kinase (EC 2.7.1.-) catalyzed the formation of [32P]phosphatidic acid by the transfer of 32PO4 from [γ-32P]adenosine 5′-triphosphate to DAG in linear proportion to the quantity of added DAG from 10 to 1000 pmol. This technique allowed reliable detection of as little as 2 pmol of added DAG. To assess levels of DAG in tissue lipid extracts a miniaturized method for silicic acid column chromatography was developed to separate DAG from triglycerides and phospholipids. When these procedures were applied to erythrocytes, lysis in the presence of Ca2+ caused a 10.6-fold rise in cellular DAG confirming not only the results obtained in an earlier investigation (1), but also the utility of this technique in the analysis of exceedingly small quantities of cellular DAG.  相似文献   

13.
The straightforward, rapid synthesis and purification of radiochemically pure [1-32P]fructose-1,6-bisphosphate starting from radioactively labeled inorganic phosphate is described. The product has a relatively high specific radioactivity (2 × 105 Ci/mol). Using this method, carrier-free [1-32P]fructose-1,6-bisphosphate could be obtained. The use of [1-32P]fructose-1,6-bisphosphate in the assay of fructose bisphosphatase is illustrated.  相似文献   

14.
A photosensitive, radioactive analogue of cyclic adenosine monophosphate, 8-azido-adenosine 3′,5′-[32P]monophosphate (8-N3-cyclic AMP), was used to label the cyclic AMP binding proteins of Dictyostelium discoideum. During development cytosolic proteins appear which are specifically labeled by the photoaffinity agent. The proteins are developmentally regulated since they are only found in starved, developing cells. Unlabeled cyclic AMP competes specifically with the labeled analogue for protein binding sites in contrast to unlabeled 5′-AMP which does not compete. A mutant which develops spores but is deficient in stalk cell production produces a different set of cyclic AMP binding proteins from the parent strain.  相似文献   

15.
Biochemical and physiological properties of adenosine 5′-phosphosulfate sulfotransferase, a key enzyme of assimilatory sulfate reduction, from spruce trees growing under field conditions were studied. The apparent Km for adenosine 5′-phosphosulfate (APS) was 29 ± 5.5μM, its apparent Mr was 115,000. 5′-AMP inhibited the enzyme competitively with a Ki of 1 mM, but also stabilized it. MgS04 at 800 mM increased adenosine 5′-phosphosulfate sulfotransferase activity by a factor of 3, concentrations higher than lOOOmM were inhibitory. Treatment of isolated shoots with nutrient solution containing 1 or 2 mM sulfate, and 3 or 10 mM glutathione, respectively, induced a significant decrease in extractable adenosine 5′-phosphosulfate sulfotransferase activity over 24h, whereas GSH as well as S2- up to 5mM cysteine and up to 200 mM SO32- had no effect on the in vitro activity of the enzyme. As with other enzymes involved in assimilatory sulfate reduction, namely ATP sulfurylase (EC 2.7.7.4), sulfite reductase (EC 1.8.7.1) and O-acetyl-L.-serine sulfhydrylase (EC 4.2.99.8), adenosine 5′-phosphosulfate sulfotransferase was still detected at appreciable activities in 2- and 3-year-old needles. Adenosine 5′-phosphosulfate sulfotransferase activity was low in buds and increased during shoot development, parallel to the chlorophyll content. The enzyme activity was characterized by an annual cycle of seasonal changes with an increase during February and March.  相似文献   

16.
Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with [γ-32P]ATP decreased in the presence of Glc-6-P and Glc-1,6-P2, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with [γ-32P]ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with [32P]Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either [γ-32P]ATP or [32P]Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extracts from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.  相似文献   

17.
The oligonucleotides A-G-A-Cm-U and Gm-A-A-Y-A-ψ were used as model compounds to demonstrate how the complete nucleotide sequence of small amounts of nonradioactive oligoribonucleotides (0.2–0.3 nmol) can be derived by a combination of 3H-labeling procedures previously published and a new method for the characterization of 2′-O-methylated nucleosides based on enzymatic 32P labeling. The newly developed method for the identification of ribose-methylated nucleosides entails 32P labeling by [γ-32P]ATP/polynucleotide kinase of the 5′-terminus of a ribonuclease T2-stable 2′-O-methylated dinucleotide derived from the polyribonucleotide, conversion of the labeled dinucleotide to the 32P-labeled 2′-O-methylated nucleoside 5′-monophosphate, and identification of the monophosphate by its chromatographic properties on a polyethyleneimine-cellulose thin layer. The novel method is simple, fast, and sensitive and, at present, represents the only way by which ribose-methylated nucleosides can be analyzed in small amounts (0.01 nmol) of nonradioactive oligonculeotides or RNA.  相似文献   

18.
After conversion of unlabeled DNA and RNA to 3′-mononucleotides accurate base compositional analysis can be performed on as little as 10 ng of the hydrolysate. The 3′-mononucleotides are first quantitatively postlabeled with [γ-32P]ATP by T4 polynucleotide kinase and are then separated as mononucleoside diphosphates on Whatman DE-81 ion-exchange paper at pH 3.5 after hydrolysis of surplus [γ-32P]ATP to 32P1. The locations of the four labeled nucleoside diphosphates are determined by autoradiography and the ratio of radioactivity in the four spots gives the base ratio of the sample.  相似文献   

19.
Improvements of existing in vitro procedures for labeling RNA radioactively, and modifications of the two-dimensional polyacrylamide gel electrophoresis system for making RNA fingerprints are described. These improvements are (a) inactivation of phosphatase with nitric acid at pH 2.0 eliminated the phenol-chloroform extraction step during 5′-end labeling with polynucleotide kinase and [γ-32P]ATP; (b) ZnSO4 inactivation of RNase T1 results in a highly efficient procedure for 3′-end labeling with T4 ligase and [5′-32P]pCp; and (c) a rapid 4-min procedure for variable quantity range of 125I and RNA results in a qualitative and quantitative sample for high-molecular weight RNA fingerprinting. Thus, these in vitro procedures become rapid and reproducible when combined with two-dimensional gel electrophoresis which eliminates simultaneously labeled impurities. Each labeling procedure is compared, using tobacco mosaic virus, Brome mosaic virus, and polio RNA. A series of Ap-rich oligonucleotides was discovered in the inner genome of Brome mosaic Virus RNA-3.  相似文献   

20.
Arnost Horak  Saul Zalik 《BBA》1976,430(1):135-144
Spinach chloroplasts were able to photophosphorylate the ADP analog α,β-methylene adenosine 5′-diphosphate (AOPCP). Phosphorylation of AOPCP was catalyzed by chloroplasts that were washed or dialyzed to remove free endogenous nucleotides. In the presence of glucose, hexokinase, AOPCP and 32Pi, the 32P label was incorporated into α,β-methylene adenosine 5′-triphosphate (AOPCPOP).In contrast to photophosphorylation of AOPCP, the ATP analog AOPCPOP was a poor substrate for the ATP-Pi exchange reaction and its hydrolysis was neither stimulated by light and dithiothreitol nor inhibited by Dio-9.Photophosphorylation of AOPCP was inhibited by the α,β- and β,γ-substituted methylene analogs of ATP, while phosphorylation of ADP was unaffected by them. The ATP-Pi exchange was also unaffected by both ATP analogs, while the weak AOPCPOP-Pi exchange was inhibited by the β,γ-methylene analog of ATP.Direct interaction of methylene analogs with the chloroplast coupling factor ATPase was indicated by the enzymatic hydrolysis of AOPCPOP on polyacrylamide gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号