首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional airlift reactors are not adequate to carry out variable volume processes since it is not possible to achieve a proper liquid circulation in these reactors until the liquid height is higher than that of the downcomer. To carry out processes of variable volume, the use of a split-cylinder airlift reactor is proposed, in the interior of which two multi-perforated vertical baffles are installed in order to provide several points of communication between the reactor riser and downcomer. This improves the liquid circulation and mixing at any liquid volume. In fed-batch cultures, it is important to know how liquid height affects the hydrodynamic characteristics and the volumetric oxygen transfer coefficient since this impacts on the kinetic behavior of any fermentation. Thus, in the present work, the effect of the liquid height on the mixing time, the overall gas hold-up, and the volumetric oxygen transfer coefficient of the proposed airlift reactor were determined. The mixing time was increased and the volumetric oxygen transfer coefficient decreased due to the increase of the liquid height in the reactor in all the superficial gas velocities tested, which corresponded to a pseudohomogeneous flow regime. The experimental values of the mixing time and the mass-transfer coefficient were properly described through correlations in which the UGR/HL ratio was used as the independent variable. Thus, this variable might be used to describe the hydrodynamic behavior and the oxygen transfer coefficient of airlift reactors when such reactors are used in processes where the liquid volume changes with time. However, these correlations are useful for the particular device and for the particular operating conditions at which they were obtained. These empirical correlations are useful to understand some factors that influence the mixing time and volumetric oxygen transfer coefficient, but such correlations do not have a sufficient predictive potential for a satisfactory reactor design. The overall gas hold-up values were not significantly affected when the liquid height was lower than the downcomer height. However, the values decreased abruptly when the reactor was operated with liquid heights over the downcomer height, especially at high superficial gas velocities.  相似文献   

2.
《Process Biochemistry》2010,45(7):1023-1029
There is limited data on gas dispersion characteristics of fixed bed biofilm reactors under growth and non-growth conditions. In this paper, the gas–liquid dispersion of a bubble bed packed with a fibrous structured packing for biofilm application is studied. The reactor is operated with Pseudomonas putida aimed at aniline degradation in wastewater. Gas hold-up and bubble size distribution are determined. Running gas–liquid reaction conditions as well as non-reactive flow gas hold-up and bubble size distribution in the presence of surface-active and viscous components were measured. The properties of the gas dispersion proved to be stabilized by the fibrous bed presence and showed improvement of the dispersion parameter by the packing. Gas hold-up was found to increase monotonously with the rise of gas superficial velocity and viscosity and with surface tension fall. Liquid superficial velocity showed marginal effect. Apart from showing high gas hold-up and low bubble size due to surface-active and viscous dissolved elements, the biochemical reaction did not pose any significant additional effect. In agreement with the expected lack of bubble coalescence and break-up in the highly ionic solution practiced, the population size distribution and average bubble size were found to vary with the major operation factors opposite to their gas hold-up contribution. Gas hold-up was correlated with the specific bubble-to-channel size ratio and further with the variables considered. An empirical equation is proposed that relates gas hold-up with all studied variables. Assuming geometric similarity of the prototype and the real vessels, the equation as well as its corresponding range of fluid velocities can be used for bioreactor design and scale-up. The results concerning the gas hold-up are shown to be comparable with previous studies of mesh wire packing.  相似文献   

3.
As a function of the gas throughput the following parameters were measured in an external loop reactor with a riser diameter of 0.6 m and a gassed liquid height of 8.6 m: integral and local values of gas hold-up; liquid velocities; mixing times and axial dispersion coefficients of the liquid phase. The height of the reactor could be altered by reconstruction. Measurements were also carried out with lower heights than 8.6 m. Besides pure water, aqueous solutions of coalescing, non-coalescing and viscosity-increasing substances were used as model systems. With the results a general relationship between superficial gas velocity, gas hold-up and liquid velocity was established. This hydrodynamic model uses the relative velocity between gas and liquid phase as the fundamental parameter. The generally valid model consists of one term for the homogeneous and of two additional terms for the heterogeneous flow regime.  相似文献   

4.
Three-dimensional steady-state computational fluid dynamics (CFD) simulations were performed in mimic anaerobic digesters to visualize their flow pattern and obtain hydrodynamic parameters. The mixing in the digester was provided by sparging gas at three different flow rates. The gas phase was simulated with air and the liquid phase with water. The CFD results were first evaluated using experimental data obtained by computer automated radioactive particle tracking (CARPT). The simulation results in terms of overall flow pattern, location of circulation cells and stagnant regions, trends of liquid velocity profiles, and volume of dead zones agree reasonably well with the experimental data. CFD simulations were also performed on different digester configurations. The effects of changing draft tube size, clearance, and shape of the tank bottoms were calculated to evaluate the effect of digester design on its flow pattern. Changing the draft tube clearance and height had no influence on the flow pattern or dead regions volume. However, increasing the draft tube diameter or incorporating a conical bottom design helped in reducing the volume of the dead zones as compared to a flat-bottom digester. The simulations showed that the gas flow rate sparged by a single point (0.5 cm diameter) sparger does not have an appreciable effect on the flow pattern of the digesters at the range of gas flow rates used.  相似文献   

5.
Longer mixing times and higher power consumption are common problems in the design of photobioreactors. In this study, a vertical triangular external airlift loop photobioreactor was designed, constructed and operated for microalgae production studies. Gas feeding was performed by two spargers: one at the bottom of the hypotenuse (downcomer) and another at the bottom of the vertical side (riser). This configuration provided more effective countercurrent liquid–gas flow in the hypotenuse. The mass transfer coefficient, gas hold-up, mixing time, circulation time, dimensionless mixing time, bubble size, and volumetric power consumption were measured and optimized using response surface methodology. Investigations were carried out on the performance of the riser (the vertical side), downcomer (the hypotenuse), and separator. The countercurrent flow in the hypotenuse provided sufficient contact between gas and liquid phases, and increased mixing and mass transfer rates, in contrast to the results of previous studies. The promising results of this geometry were shorter mixing time and a significant decrease in volumetric power consumption in comparison with other configurations for photobioreactors.  相似文献   

6.
This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (k(L)a), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, k(L)a.  相似文献   

7.
The present study summarizes results of mixing characteristics in a draft tube airlift bioreactor using ERT. This technique offers the possibility for noninvasive and nonintrusive visualization of flow fields in the bioreactor and has rarely been utilized previously to analyze operating parameters and mixing characteristics in this type of bioreactors. Several operating parameters and geometric characteristics were examined. In general, results showed that the increase in superficial gas velocity corresponds to an increase in energy applied and thus, to a decrease in mixing time. This generally corresponded to an increase in liquid circulation velocity and shear rate values. Bottom clearances and draft tube diameters affected flow resistance and frictional losses. The influence of sparger configurations on mixing time and liquid circulation velocity was significant due to their effect on gas distribution. However, the effect of sparger configuration on shear rate was not significant, with 20% reduction in shear rates using the cross-shaped sparger. Fluid viscosity showed a marked influence on both mixing times and circulation velocity especially in the coalescing media of sugar and xanthan gum (XG) solutions. Results from this work will help to develop a clear pattern for operation and mixing that can help to improve several industrial processes, especially the ones related to emerging fields of technology such as the biotechnology industry.  相似文献   

8.
ABSTRACT:?

This review focuses on the hydrodynamic and mass transfer characteristics of various three-phase, gaslift fluidized bioreactors. The factors affecting the mixing and volumetric mass transfer coefficient (kLa), such as liquid properties, solid particle properties, liquid circulation velocity, superficial gas velocity, bioreactor geometry, are reviewed and discussed. Measurement methods, modeling and empirical correlations are reviewed and compared. To the authors' knowledge, there is no 'generalized' correlation to calculate the volumetric mass transfer coefficient, instead, only 'type-specific' correlations are available in the literature. This is due to the difficulty in modeling the gaslift bioreactor, caused by the variation in geometry, fluid dynamics, and phase interactions. The most important design parameters reported in the literature are: gas hold-up, liquid circulation velocity, 'true' superficial gas velocity, mixing, shear rate, aeration rate and volumetric mass transfer coefficient, kLa.  相似文献   

9.
The effect of the addition of ethanol (10?g/l) to the liquid-phase on gas and solids holdup, circulation and mixing times and interstitial liquid velocity in a three-phase airlift reactor was investigated. The airlift reactor (60?l) is of the concentric draught-tube type with an enlarged degassing zone. Ca-alginate beads were used as solid-phase and airflow rate (from 1.9 to 90.2?l/min) and solids loading (0–30% (v/v)) were manipulated. Riser and downcomer gas holdup were found to increase with the addition of ethanol, leading to a decrease on the relative solids holdup. The presence of ethanol seems to have no influence on the circulation time. On the other hand, mixing time variation depends on the solids loading and airflow rate. Riser and downcomer interstitial liquid velocity are lower for ethanol solution than for water.  相似文献   

10.
Measurements of oxygen transfer were made during cultivation of the yeast Saccharomyces cerevisiae in a 90–250 litre working volume concentric tube airlift fermenter. Results demonstrated that the rate of oxygen transfer varies with position in the fermenter, being higher in the riser and top-section than in the downcomer and lowest near the base of the fermenter. The time for liquid circulation was generally smaller than the time constant for oxygen transfer (1/kLa) indicating that the rate of oxygen transfer was slow compared to the rate of liquid movement. Measured dissolved oxygen concentrations therefore did not represent the equilibrium arising from the balance between the rates of oxygen transfer and oxygen depletion. Hence measuredk L a values were not representative of local oxygen transfer conditions but instead were indicators of the rate of mass transfer the liquid flow had encountered prior to reaching the point of measurement. Generally the individual rates of oxygen transfer in the vessel were found to increase with increasing vessel height.  相似文献   

11.
The influence of mixing and phase hold-ups on gas-producing fluidized-bed reactors was investigated and compared with an ideal flow reactor performance (CSTR). The liquid flow in the anaerobic fluidized bed reactor could be described by the classical axially dispersed plug flow model according to measurements of residence time distribution. Gas effervescence in the fluidized bed was responsible for bed contraction and for important gas hold-up, which reduced the contact time between the liquid and the bioparticles. These results were used to support the modeling of large-scale fluidized-bed reactors. The biological kinetics were determined on a 180-L reactor treating wine distillery wastewater where the overall total organic carbon uptake velocity could be described by a Monod model. The outlet concentration and the concentration profile in the reactor appeared to be greatly influenced by hydrodynamic limitations. The biogas effervescence modifies the mixing characteristics and the phase hold-ups. Bed contraction and gas hold-up data are reported and correlated with liquid and gas velocities. It is shown that the reactor performance can be affected by 10% to 15%, depending on the mode of operation and recycle ratio used. At high organic loading rates, reactor performance is particularly sensitive to gas effervescence effects. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

12.
Hydrodynamic and oxygen transfer comparisons were made between two ring sparger locations, draft tube and annulus, in a concentric pilot scale airlift reactor with a baker's yeast suspension. Sectional hydrodynamic measurements were made and a mobile DOT probe was used to characterise the oxygen transfer performance through the individual sections of the reactor. The hydrodynamic performance of the reactor was improved by using a draft tube ring sparger rather than the annulus ring sparger. This was due to the influence of the ratio of the cross sectional area of the downcomer and riser (A D/AR) in conjunction with the effect of liquid velocity and a parameter,C 0, describing the distribution of the liquid velocity and gas holdup across the riser on the bubble coalescence rates. The mixing performance of the reactor was dominated by the frequency of the passage of the broth through the end sections of the reactor. An optimum liquid height above the draft tube, for liquid mixing was demonstrated, above which no further improvement in mixing occurred. The liquid velocity and degree of gas entrainment showed little dependency on top section size for both sparger configurations. Extreme dissolved oxygen heterogeneity was demonstrated around the vessel with both sparger configurations and was shown to be detrimental to the oxygen uptake rate of the baker's yeast. Dissolved oxygen tensions below 1% air saturation occurred along the length of the riser and then rose in the downcomer. The greater oxygen transfer rate in the downcomer than in the riser was caused by the combined effects of a larger slip velocity in the downcomer which enhancedk La and gas residence time, high downcomer gas holdup, and the change in bubble size distribution between the riser and downcomer. The position of greatest oxygen transfer rate in the downcomer was shown to be affected by the reactor from the influence on downcomer liquid linear velocity. UCL is the Biotechnology and Biological Sciences Research Council sponsored Advanced Centre for Biochemical Engineering and the Council's support is greatly acknowledged.  相似文献   

13.
Summary The hydrodynamics in a bubble column bioreactor with fermentation broths having a yield stress are studied. Specifically, the liquid velocity at the reactor axis, the axial dispersion coefficient, and the gas hold-up are examined. The liquid velocity at the reactor axis and the gas hold-up are measured in a 40-1 bench-scale bubble column fermentor using carboxypolymethylene (Carbopol) aqueous solutions as simulated broths. Theoretical correlations for the liquid velocity at the reactor axis, the axial dispersion coefficient, and the gas hold-up are derived on the basis of an energy balance and the mixing length theory. The correlations are compared with the present data and a reasonable agreement is found. The theoretical predictions are also in satisfactory agreement with the re-examined data for actual fermentation broths which are Chaetomium cellulolyticum and Neurospora sitophila cultured in a 1000-1 pilot-plant scale airlift fermentor.  相似文献   

14.
A novel centrifugal impeller bioreactor for shear-sensitive biological systems was designed by installing a centrifugal-pumplike impeller in a stirred vessel. The fluid circulation, mixing, and liquid velocity profiles in the new bioreactor (5-L) were assessed as functions of the principal impeller designing and bioreactor operating parameters. The performances of the centrifugal impeller bioreactor were compared with those of a widely used cell-lift bioreactor. The newly developed bioreactor showed higher liquid lift capacity and shorter mixing time than the cell lift with comparable dimensions. Furthermore, the experiments of the liquid velocity profiles around an impeller region indicated that the centrifugal impeller bioreactor produced lower shear stress than the cell lift. This conclusion was also supported by evaluating the changes in size distributions of granulated agar particles that were sheared with those two types of impeller.  相似文献   

15.
Liquid circulation superficial velocity and gas holdup behaviours were investigated in an external-loop airlift bioreactor of 0.170?m3 liquid volume in gas-induced and forced-circulation-loop operation modes, in the presence of static mixers made of corrugated stainless steel pieces, resulting in packets with the height-to-diameter ratio equal to unity and using non-Newtonian starch solutions as liquid phase. The static mixers were disposed in the riser in three blocks, each with three mixing packets, successively turned 90° to the adjacent mixing element. It was found that in the presence of static mixers and forced-loop operation mode, liquid circulation superficial velocity in the riser section was significantly diminished, while gas holdup increased in a great measure. It was considered that static mixers split the fluid into individual streams and break up the bubbles, resulting in small bubble sizes with a relative homogeneous bubble distribution over riser cross section. They act as supplementary resistances in liquid flow, reducing riser cross sectional area, equivalent with A D /A R area ratio diminishing.  相似文献   

16.
A glass airlift fermenter, 1550 ml working volume, was used for microbiological transformation of phytosterols. A gas hold-up of 1.6% was observed with the lowest superficial gas velocity (1.89 cm/s). The volumetric liquid circulation rate remained relatively constant (0.21 l/s to 0.23 l/s) for superficial gas velocity values up to 11.37 cm/s. A 72% conversion of sitosterol to 1,4-androstadiene-3,17-dione was obtained.  相似文献   

17.
The paper presents a model of the motion of a particle subjected to several transport processes in connection with mixing in two phase flow. A residence time distribution technique coupled with a one-dimensional dispersion model was used to obtain the axial dispersion coefficient in the liquid phase, Dax. The proposed model of Dax for an external-loop airlift bioreactor is based on the stochastic analysis of the two-phase flow in a cocurrent bubble column and modified for the specific flow in the airlift reactor. The model takes into account the riser gas superficial velocity, the riser liquid superficial velocity, the Sauter bubble diameter, the riser gas hold-up, the downcomer-to-riser cross sectional area ratio. The proposed model can be applied with an average error of ᆨ.  相似文献   

18.
Summary Fractional gas holdup study was carried out in two airlift fermenters: one having of conventional design, the other having an asymetric riser arm. Air flow rate was varied from 1.5 to 9.0 cm/sec and gas hold-up values compared. Fractional gas holdup, G, was strongly dependent on superficial gas velocity and initial liquid height. The modified fermenter always showed a higher gas holdup than the conventionally designed one.Symbols ALF Airlift Fermenter - CDT Convergent-divergent Tube - UT Uniform Tube - UG Superficial gas velocity, cm/s - hi Initial liquid height in riser, cm - Hi Dispersed liquid height in riser, cm - HO Dispersed liquid height in downcomer, cm - K,m,n Constant - a,a Constant - Ad Riser cross sectional area, cmz - Ar Downcomer cross sectional area, cmz - Ub Bubble rise velocity, cm/s - g Acceleration due to gravity, cm/sz - dB Bubble diameter, cm - Rev Bubble's Reynolds number, dimensionless Greek Letters G Fractional gas holdup, dimensionless - {ITG9}{INL} Liquid density, g/cc - {IT}{INL} Liquid viscosity, poise(g/cm.s) - {ITGS}{INL} Liquid surface tension, dyne/cm - porous plate pore diameter, cm  相似文献   

19.
A 10.5-m(3) concentric tube jet loop reactor was used to study the influence of the working liquid volume, mean superficial air velocity, operating pressure, downcomer aeration, liquid jet velocity, and two ratios of draft tube/reactor diameter (D(t)/D) on liquid circulation time (T(c)). The experiments were carried out in a water-air system with the use of the acid pulse method. Results showed that circulation time was independent of the working liquid volume over a certain minimum liquid level, whereas downcomer aeration and D(t)/D ratio appeared as amenable parameters to achieve a high degree of control over liquid circulation and mixing efficiency, and to optimize the overall reactor performance. Increasing the operating pressure caused a reduction of the liquid circulation rate. However, ionger residence times of the air bubbles and the higher mass transfer driving force that result at higher pressures improve oxygen utilization. The relationship between T(c) and air load was independent of the operating pressure, provided the correlation is given as a function of the mean superficial air velocity. Neither liquid circulation nor gas holdup were significantly affected by liquid jet velocity. (c) 1995 John Wiley & Sons, Inc.  相似文献   

20.
Saccharomyces cerevisiae was cultivated in a 4-m(3) pilot plant airlift tower loop reactor with a draft tube in batch and continuous operations and for comparison in a laboratory airlift tower loop reactor of 0.08 m(3) volume. The reactors were characterized during and after the cultivation by measuring the distributions of the residence times of the gas phase with pseudostochastic tracer signals and mass spectrometer and by evaluating the mixing in the liquid phase with a pulse-shaped volatile tracer signal and mass spectrometer as a detector. The mean residence times and the intensities of the axial mixing in the riser and downcomer, the circulation times of the gas phase, and the fraction of the recirculated gas phase were evaluated and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号