首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While studying the cellular localization and activity of enzymes involved in heparan sulfate biosynthesis, we discovered that the published sequence for the glucuronic acid C5-epimerase responsible for the interconversion of d-glucuronic acid and l-iduronic acid residues encodes a truncated protein. Genome analysis and 5'-rapid amplification of cDNA ends was used to clone the full-length cDNA from a mouse mastocytoma cell line. The extended cDNA encodes for an additional 174 amino acids at the amino terminus of the protein. The murine sequence is 95% identical to the human epimerase identified from genomic sequences and fits with the general size and structure of the gene from Drosophila melanogaster and Caenorhabditis elegans. Full-length epimerase is predicted to have a type II transmembrane topology with a 17-amino acid transmembrane domain and an 11-amino acid cytoplasmic tail. An assay with increased sensitivity was devised that detects enzyme activity in extracts prepared from cultured cells and in recombinant proteins. Unlike other enzymes involved in glycosaminoglycan biosynthesis, the addition of a c-myc tag or green fluorescent protein to the highly conserved COOH-terminal portion of the protein inhibits its activity. The amino-terminally truncated epimerase does not localize to any cellular compartment, whereas the full-length enzyme is in the Golgi, where heparan sulfate synthesis is thought to occur.  相似文献   

2.
Using three different approaches (domain mapping with monoclonal antibodies, limited enzymatic digestion and competition with synthetic peptides), we demonstrated that a cluster of basic amino acids on interferon-gamma is involved in its binding to heparan sulfate. This cluster (Lys125-Arg131) is localized in the C-terminal part of IFN-gamma. Once bound to heparin sulfate, IFN-gamma is protected against protease attack.  相似文献   

3.
The primary structure of the large human basement membrane heparan sulfate proteoglycan (HSPG) core protein was determined from cDNA clones. The cDNA sequence codes for a 467-kD protein with a 21-residue signal peptide. Analysis of the amino acid sequence showed that the protein consists of five domains. The amino-terminal domain I contains three putative heparan sulfate attachment sites; domain II has four LDL receptor-like repeats; domain III contains repeats similar to those in the short arms of laminin; domain IV has lg-like repeats resembling those in neural cell adhesion molecules; and domain V contains sequences resembling repeats in the G domain of the laminin A chain and repeats in the EGF. The domain structure of the human basement membrane HSPG core protein suggests that this mosaic protein has evolved through shuffling of at least four different functional elements previously identified in other proteins and through duplication of these elements to form the functional domains. Comparison of the human amino acid sequence with a partial amino acid sequence from the corresponding mouse protein (Noonan, D. M., E. A. Horigan, S. R. Ledbetter, G. Vogeli, M. Sasaki, Y. Yamada, and J. R. Hassell. 1988. J. Biol. Chem. 263:16379-16387) shows a major difference between the species in domain IV, which contains the Ig repeats: seven additional repeats are found in the human protein inserted in the middle of the second repeat in the mouse sequence. This suggests either alternative splicing or a very recent duplication event in evolution. The multidomain structure of the basement membrane HSPG implies a versatile role for this protein. The heparan sulfate chains presumably participate in the selective permeability of basement membranes and, additionally, the core protein may be involved in a number of biological functions such as cell binding, LDL-metabolism, basement membrane assembly, calcium binding, and growth- and neurite-promoting activities.  相似文献   

4.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

5.
Human heparanase. Purification, characterization, cloning, and expression.   总被引:30,自引:0,他引:30  
Heparan sulfate and heparan sulfate proteoglycans are present in the extracellular matrix as well as on the external cell surface. They bind various molecules such as growth factors and cytokines and modulate the biological functions of binding proteins. Heparan sulfate proteoglycans are also important structural components of the basement membrane. Heparanase is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate and has been implicated in inflammation and tumor angiogenesis and metastasis. In this study, we report the purification of a human heparanase from an SV40-transformed embryonic fibroblast cell line WI38/VA13 by four sequential column chromatographies. The activity was measured by high speed gel permeation chromatography of the degradation products of fluorescein isothiocyanate-labeled heparan sulfate. The enzyme was purified to homogeneity, yielding a peptide with an apparent molecular mass of 50 kDa when analyzed by SDS-polyacrylamide gel electrophoresis. Using the amino acid sequences of the N-terminal and internal heparanase peptides, a cDNA coding for human heparanase was cloned. NIH3T3 and COS-7 cells stably transfected with pBK-CMV expression vectors containing the heparanase cDNA showed high heparanase activities. The homology search revealed that no homologous protein had been reported.  相似文献   

6.
The Drosophila pipe gene encodes ten related proteins that exhibit amino acid sequence similarity to vertebrate heparan sulfate 2-O-sulfotransferase. One of the Pipe isoforms, which is expressed in the ventral follicular epithelium, is a key determinant of embryonic dorsoventral polarity, suggesting that Pipe-mediated sulfation of a heparan sulfate proteoglycan provides a spatial cue for dorsoventral axis formation. We used several approaches to investigate this possibility in the work described here. We determined the nucleotide alterations in 11 different pipe alleles. Ten of the mutations specifically affect the pipe isoform that is expressed in the ovary. Among these ten mutations, two alter an amino acid in the putative binding site for 3'-phosphoadenosine 5'-phosphosulfate, the universal sulfate donor. Using Alcian Blue, a histochemical stain that detects sulfated glycans, we observed a novel, pipe-dependent macromolecule in the embryonic salivary glands. Genes known to participate in the formation of heparan sulfate in Drosophila are not required for the production of this material. To investigate whether a heparan sulfate proteoglycan is involved in pipe function in dorsoventral patterning, we generated females carrying follicle cell clones mutant for heparan sulfate synthesis-related genes. Embryos from follicles with mutant clones did not exhibit a dorsalized phenotype. Taken together, our data provide evidence that Pipe acts as a sulfotransferase, but argue against the hypothesis that the target of Pipe is a heparan sulfate glycosaminoglycan.  相似文献   

7.
Heparan sulfate proteoglycan from human and equine glomeruli and tubules   总被引:1,自引:0,他引:1  
1. Proteoglycans were isolated from human and equine glomeruli or tubules by guanidine extraction and anion exchange chromatography. 2. These proteoglycan preparations contained about equal amounts of heparan sulfate and chondroitin sulfates. 3. During the preparation of glomerular or tubular basement membranes the main part of proteoglycans (greater than 50%) was extracted in the salt extract. Chondroitin sulfate proteoglycan was mainly found in the water and salt extracts of glomeruli and tubules, heparan sulfate proteoglycan in the deoxycholate extracts and the basement membranes. 4. The glomerular basement membrane (GBM) contains about 12% (human) or 20% (equine) of the proteoglycans of the total glomerulus. They consist of greater than 70% (equine) or 80% (human) of heparan sulfate. 5. Heparan sulfate proteoglycan was isolated from the proteoglycan preparations of human or equine glomeruli and tubules by additional treatment with nucleases and chondroitinase ABC followed by CsCl gradient centrifugation. 6. Protein accounts for about 40% (dry weight) of the heparan sulfate proteoglycans. Their amino acid composition is characterized by a high content of glycine, but 3-hydroxyproline, 4-hydroxyproline and hydroxylysine are lacking. 7. The biochemical characteristics of the heparan sulfate proteoglycan of human or equine glomeruli or tubules differ from that isolated from rat glomeruli by their higher protein content and their amino acid composition. The significance of these differences is discussed.  相似文献   

8.
The proteins encoded by the EXT1, EXT2, and EXTL2 genes, members of the hereditary multiple exostoses gene family of tumor suppressors, are glycosyltransferases required for the heparan sulfate biosynthesis. Only two homologous genes, rib-1 and rib-2, of the mammalian EXT genes were identified in the Caenorhabditis elegans genome. Although heparan sulfate is found in C. elegans, the involvement of the rib-1 and rib-2 proteins in heparan sulfate biosynthesis remains unclear. In the present study, the substrate specificity of a soluble recombinant form of the rib-2 protein was determined and compared with those of the recombinant forms of the mammalian EXT1, EXT2, and EXTL2 proteins. The present findings revealed that the rib-2 protein was a unique alpha1,4-N-acetylglucosaminyltransferase involved in the biosynthetic initiation and elongation of heparan sulfate. In contrast, the findings confirmed the previous observations that both the EXT1 and EXT2 proteins were heparan sulfate copolymerases with both alpha1,4-N-acetylglucosaminyltransferase and beta1,4-glucuronyltransferase activities, which are involved only in the elongation step of the heparan sulfate chain, and that the EXTL2 protein was an alpha1,4-N-acetylglucosaminyltransferase involved only in the initiation of heparan sulfate synthesis. These findings suggest that the biosynthetic mechanism of heparan sulfate in C. elegans is distinct from that reported for the mammalian system.  相似文献   

9.
10.
We have analyzed the content of N-unsubstituted glucosamine in heparan sulfate from glypican-1 synthesized by endothelial cells during inhibition of (a) intracellular progression by brefeldin A, (b) heparan sulfate degradation by suramin, and/or (c) endogenous nitrite formation. Glypican-1 from brefeldin A-treated cells carried heparan sulfate chains that were extensively degraded by nitrous acid at pH 3.9, indicating the presence of glucosamines with free amino groups. Chains with such residues were rare in glypican-1 isolated from unperturbed cells and from cells treated with suramin and, surprisingly, when nitrite-deprived. However, when nitrite-deprived cells were simultaneously treated with suramin, such glucosamine residues were more prevalent. To locate these residues, chains were first cleaved at linkages to sulfated l-iduronic acid by heparin lyase and released fragments were separated from core protein carrying heparan sulfate stubs. These stubs were then cleaved off at sites linking N-substituted glucosamines to d-glucuronic acid. These fragments were extensively degraded by nitrous acid at pH 3.9. When purified proteoglycan isolated from brefeldin A-treated cells was incubated with intact cells, endoheparanase-catalyzed degradation generated a core protein with heparan sulfate stubs that were similarly sensitive to nitrous acid. We conclude that there is a concentration of N-unsubstituted glucosamines to the reducing side of the endoheparanase cleavage site in the transition region between unmodified and modified chain segments near the linkage region to the protein. Both sites as well as the heparin lyase-sensitive sites seem to be in close proximity to one another.  相似文献   

11.

Background  

The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs). In the present study, nuclear magnetic resonance (NMR) was used to map the binding site(s) of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction.  相似文献   

12.
We have obtained the complete coding sequence of a highly conserved heparan sulfate proteoglycan which we previously characterized biochemically after isolation from rat brain. An open reading frame of 558 amino acids encodes a protein with a molecular mass of 62 kDa containing three peptide sequences present in the isolated proteoglycan. The total sequence obtained is 3.5 kb long, including 1.6 kb of 3'-untranslated sequence and 0.2 kb of 5'-untranslated sequence. The deduced amino acid sequence and the 3'- and 5'-untranslated sequences have 89% and 66-80% identity, respectively, with those of a phosphatidylinositol-anchored human lung fibroblast heparan sulfate proteoglycan (glypican) for which mRNA is detectable in a large number of human cell lines. Our data therefore demonstrate that this major heparan sulfate proteoglycan of brain is the rat form of glypican.  相似文献   

13.
Laboratory strains of Sindbis virus must bind to the negatively charged glycosaminoglycan heparan sulfate in order to efficiently infect cultured cells. During infection of mice, however, we have frequently observed the development of large-plaque viral mutants with a reduced ability to bind to heparan sulfate. Sequencing of these mutants revealed changes of positively charged amino acids in putative heparin-binding domains of the E2 glycoprotein. Recombinant viruses were constructed with these changes as single amino acid substitutions in a strain Toto 1101 background. All exhibited decreased binding to heparan sulfate and had larger plaques than Toto 1101. When injected subcutaneously into neonatal mice, large-plaque viruses produced higher-titer viremia and often caused higher mortality. Because circulating heparin-binding proteins are known to be rapidly sequestered by tissue heparan sulfate, we measured the kinetics of viral clearance following intravenous injection. Much of the parental small-plaque Toto 1101 strain of Sindbis virus was cleared from the circulation by the liver within minutes, in contrast to recombinant large-plaque viruses, which had longer circulating half-lives. These findings indicate that a decreased ability to bind to heparan sulfate allows more efficient viral production in vivo, which may in turn lead to increased mortality. Because Sindbis virus is only one of a growing number of viruses from many families which have been shown to bind to heparan sulfate, these results may be generally applicable to the pathogenesis of such viruses.  相似文献   

14.
We previously showed that vaccinia virus infection of BSC40 cells was blocked by soluble heparin, suggesting that cell surface heparan sulfate mediates vaccinia virus binding (C.-S. Chung, J.-C. Hsiao, Y.-S. Chang, and W. Chang, J. Virol. 72:1577–1585, 1998). In this study, we extended our previous work and demonstrated that soluble A27L protein bound to heparan sulfate on cells and interfered with vaccinia virus infection at a postbinding step. In addition, we investigated the structure of A27L protein that provides for its binding to heparan sulfate on cells. A mutant of A27L protein, named D-A27L, devoid of a cluster of 12 amino acids rich in basic residues, was constructed. In contrast to the soluble A27L protein, purified D-A27L protein was inactive in all of our assays, including binding to heparin in vitro, binding to heparan sulfate on cells, and the ability to block virus infection. These data demonstrated that the N-terminal region acts as a glycosaminoglycan (GAG)-binding domain critical for A27L protein binding to cells. Previously A27L protein was thought to be involved in fusion of virus-infected cells induced by acid treatment. When we investigated whether cell surface GAGs also participate in A27L-dependent fusion, our results indicated that soluble A27L protein blocked cell fusion, whereas D-A27L protein did not. Taken together, the results therefore demonstrated that A27L-mediated cell fusion is triggered by its interaction with cell surface GAGs through the N-terminal domain.  相似文献   

15.
Interferon-gamma binds to the glycosaminoglycan part of basement membrane proteoglycan. To obtain a greater insight into this interaction, different glycosaminoglycans and their subfractions were used in various binding assays. High affinity binding occurs with heparin and heparan sulfate only, the latter being the predominant basement membrane glycosaminoglycan. Furthermore, using heparan sulfate and heparin treated with heparinases I and III, we have shown that the interferon-gamma binding sites are localized on the N-sulfated glucosamine rich domains of the molecule. Interestingly, interferon-gamma and fibroblast growth factor compete for the same binding domain on heparan sulfate, although they are unrelated proteins. This last point is discussed in the light of the conformational flexibility of the glycosaminoglycan molecules.  相似文献   

16.
17.
Based on sequence homology with the recently cloned human chondroitin synthase, we identified a novel beta1,4-N-acetylgalactosaminyltransferase, which consisted of 532 amino acids with a type II transmembrane protein topology. The amino acid sequence displayed 27% identity to that of human chondroitin synthase. The expression of a soluble form of the protein in COS-1 cells produced an active enzyme, which transferred beta1,4-N-acetylgalactosamine (GalNAc) from UDP-[(3)H]GalNAc not only to a polymer chondroitin representing growing chondroitin chains (beta-GalNAc transferase II activity) but also to GlcUAbeta1--3Galbeta1-O-C(2)H(4)NH-benzyloxycarbonyl, a synthetic substrate for beta-GalNAc transferase I that transfers the first GalNAc to the core tetrasaccharide in the protein linkage region of chondroitin sulfate. Hence, the enzyme is involved in the biosynthetic initiation and elongation of chondroitin sulfate and is the key enzyme responsible for the selective chain assembly of chondroitin/dermatan sulfate on the linkage region tetrasaccharide common to various proteoglycans containing chondroitin/dermatan sulfate or heparin/heparan sulfate chains. The coding region of this enzyme was divided into seven discrete exons and localized to chromosome 8. Northern blot analysis revealed that the chondroitin GalNAc transferase gene exhibited a ubiquitous but markedly differential expression in human tissues and that the expression pattern was similar to that of chondroitin synthase. Thus, more than two distinct enzymes forming the novel gene family are required for chain initiation and elongation in chondroitin/dermatan sulfate as in the biosynthesis of heparin/heparan sulfate.  相似文献   

18.
NKp44 is a natural cytotoxicity receptor expressed by human NK cells upon activation. In this study, we demonstrate that cell surface heparan sulfate proteoglycans (HSPGs), expressed by target cells, are involved in the recognition of tumor cells by NKp44. NKp44 showed heparan sulfate-dependent binding to tumor cells; this binding was partially blocked with an antibody to heparan sulfate. In addition, direct binding of NKp44 to heparin was observed, and soluble heparin/heparan sulfate enhanced the secretion of IFNgamma by NK92 cells activated with anti-NKp44 monoclonal antibody. Basic amino acids, predicted to constitute the putative heparin/heparan sulfate binding site of NKp44, were mutated. Tumor cell recognition of the mutated NKp44 proteins was significantly reduced and correlated with their lower recognition of heparin. We previously reported that NKp44 recognizes the hemagglutinin of influenza virus (IV). Nevertheless, the ability of the mutated NKp44 proteins to bind viral hemagglutinin expressed by IV-infected cells was not affected. Thus, we suggest that heparan sulfate epitope(s) are ligands/co-ligands of NKp44 and are involved in its tumor recognition ability.  相似文献   

19.
Cell surface heparan sulfate proteoglycans facilitate uptake of growth-promoting polyamines (Belting, M., Persson, S., and Fransson, L.-A. (1999) Biochem. J. 338, 317-323; Belting, M., Borsig, L., Fuster, M. M., Brown, J. R., Persson, L., Fransson, L.-A., and Esko, J. D. (2001) Proc. Natl. Acad. Sci. U. S. A., in press). Here, we have analyzed the effect of polyamine deprivation on the structure and polyamine affinity of the heparan sulfate chains in various glypican-1 glycoforms synthesized by a transformed cell line (ECV 304). Heparan sulfate chains of glypican-1 were either cleaved with heparanase at sites embracing the highly modified regions or with nitrite at N-unsubstituted glucosamine residues. The products were separated and further degraded by heparin lyase to identify sulfated iduronic acid. Polyamine affinity was assessed by chromatography on agarose substituted with the polyamine spermine. In heparan sulfate made by cells with undisturbed endogenous polyamine synthesis, free amino groups were restricted to the unmodified, unsulfated segments, especially near the core protein. Spermine high affinity binding sites were located to the modified and highly sulfated segments that were released by heparanase. In cells with up-regulated polyamine uptake, heparan sulfate contained an increased number of clustered N-unsubstituted glucosamines and sulfated iduronic acid residues. This resulted in a greater number of NO/nitrite-sensitive cleavage sites near the potential spermine-binding sites. Endogenous degradation by heparanase and NO-derived nitrite in polyamine-deprived cells generated a separate pool of heparan sulfate oligosaccharides with an exceptionally high affinity for spermine. Spermine uptake in polyamine-deprived cells was reduced when NO/nitrite-generated degradation of heparan sulfate was inhibited. The results suggest a functional interplay between glypican recycling, NO/nitrite-generated heparan sulfate degradation, and polyamine uptake.  相似文献   

20.
Fibroblasts cultured from the skin of three unrelated patients with the clinical symptoms of the Sanfilippo syndrome (mucopolysaccharidosis III) accumulated intracellularly excessive amounts of heparan sulfate and showed a lengthened turnover time for this mucopolysaccharide. They exhibited, however, neither a deficiency of heparan sulfate sulfamidase or alpha-N-acetylglucosaminidase nor of any other known glycosaminoglycan-degrading hydrolase. This new mucopolysaccharidosis was therefore designated as type C of the Sanfilippo syndrome. The abnormal heparan sulfate metabolism of Sanfilippo C fibroblasts could not be normalized by addition of crude urinary proteins or concentrated secretions from normal fibroblasts to the culture medium or by cocultivation with normal fibroblasts. The accumulated heparan sulfate was characterized by a reduced negative net charge. A small proportion of it could be adsorbed onto a cation exchange resin. It was sensitive to nitrous acid degradation under conditions where glucosamine residues with free amino groups are attacked. It is therefore suggested that the primary defect in this new mucopolysaccharidosis concerns the step which follows the hydrolysis of N-sulfonate groups in heparan sulfate degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号