首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metaphase chromosomes prepared from colcemid-treated mouse L929 cells by non-ionic detergent lysis exhibit distinct heterochromatic centromere regions and associated kinetochores when viewed by whole mount electron microscopy. Deoxyribonuclease I treatment of these chromosomes results in the preferential digestion of the chromosomal arms leaving the centromeric heterochromatin and kinetochores apparently intact. Enrichment in centromere material after DNase I digestion was quantitated by examining the increase in 10,000xg pellets of the 1.691 g/cc satellite DNA relative to main band DNA. This satellite species has been localized at the centromeres of mouse chromosomes by in situ hybridization. From our analysis it was determined that DNase I digestion results in a five to six-fold increase in centromeric material. In contrast to the effect of DNase I, micrococcal nuclease was found to be less selective in its action. Digestion with this enzyme solubilized both chromosome arms and centromeres leaving only a small amount of chromatin and intact kinetochores.  相似文献   

2.
Whereas the major satellite fraction in mouse extends its domain from the centromere to the distal end of the pericentric heterochromatin, the minor satellite DNA is present specifically in the centromere or primary constriction. We hybridized the biotinylated minor satellite sequence to L929 cells of mouse origin. The sequence hybridized to all chromosomes. Whereas hybridization was detected on all active centromeres, the inactive centromeres in certain dicentrics did not show any signal. This satellite, however, was detected in all inactive centromeres in a heptacentric chromosome. The intensity of fluorescence on the inactive centromeres of the heptacentric was similar to that present on the active centromeres. Several heterochromatin blocks, which were not associated with any centromere, were also found to lack hybridization with the minor satellite. The inactive centromeres, whether carrying the minor satellite DNA fraction or not, generally do not react with the antikinetochore antibodies present in the scleroderma serum. These studies are interpreted to show that (1) the primary constriction in mouse can be formed without the participation of minor satellite, (2) heterochromatin in mouse may constitute without this fraction, (3) the major and minor satellite may not be interspersed but are joined at some defined boundary, and (4) the binding of CENP-B does not depend upon the quantity of minor satellite or the number of CENP boxes present in the inactive centromeres.  相似文献   

3.
鳙鱼染色体的DAPI核型分析   总被引:4,自引:1,他引:3  
孔庆亮  李宗芸  傅美丽  王勤  满影  王宏宇 《四川动物》2006,25(1):64-67,F0004
利用腹腔注射秋水仙素制备肾细胞染色体方法和DAPI(4',6'-diamidino-2-phenylindole)荧光染色的方法,对鳙鱼(Aristichthys,nobills)的染色体组型和染色质的分布进行了研究。结果表明,其二倍体数目为2n=48,核型为30M+14SM+2ST+2T。DAPI荧光染色显示间期细胞核中荧光亮度较为一致,提示异染色质在间期细胞核中分布比较均一。而DAPI荧光染色在第1和第4染色体的短臂上较为明亮,其余染色体上的明亮区都分布在着丝粒区域,表明第1和第4染色体上的异染色质主要集中在染色体的短臂上,其余染色体的异染色质主要分布在着丝粒区域。  相似文献   

4.
The experiments described were directed toward understanding relationships between mouse satellite DNA, sister chromatid pairing, and centromere function. Electron microscopy of a large mouse L929 marker chromosome shows that each of its multiple constrictions is coincident with a site of sister chromatid contact and the presence of mouse satellite DNA. However, only one of these sites, the central one, possesses kinetochores. This observation suggests either that satellite DNA alone is not sufficient for kinetochore formation or that when one kinetochore forms, other potential sites are suppressed. In the second set of experiments, we show that highly extended chromosomes from Hoechst 33258-treated cells (Hilwig, I., and A. Gropp, 1973, Exp. Cell Res., 81:474-477) lack kinetochores. Kinetochores are not seen in Miller spreads of these chromosomes, and at least one kinetochore antigen is not associated with these chromosomes when they were subjected to immunofluorescent analysis using anti-kinetochore scleroderma serum. These data suggest that kinetochore formation at centromeric heterochromatin may require a higher order chromatin structure which is altered by Hoechst binding. Finally, when metaphase chromosomes are subjected to digestion by restriction enzymes that degrade the bulk of mouse satellite DNA, contact between sister chromatids appears to be disrupted. Electron microscopy of digested chromosomes shows that there is a significant loss of heterochromatin between the sister chromatids at paired sites. In addition, fluorescence microscopy using anti-kinetochore serum reveals a greater inter-kinetochore distance than in controls or chromosomes digested with enzymes that spare satellite. We conclude that the presence of mouse satellite DNA in these regions is necessary for maintenance of contact between the sister chromatids of mouse mitotic chromosomes.  相似文献   

5.
The distribution of sites capable of binding mouse satellite-complementary RNA in the cytological hybridization reaction has been examined in mouse liver and testis interphase nuclei. The approach taken has been to combine hybridization with semi-thin sectioning and autoradiography in order to obtain a clear picture of the relationship of satellite DNA-containing structures to the rest of the interphase nucleus. In liver nuclei, hybridization occurs primarily with blocks of heterochromatin associated with the nuclear envelope. The most prominent of these, in terms both of size and intensity of hybridization, is the nucleolar stalk and the rest of the nucleolus-associated heterochromatin. The nucleolar body itself is not labeled, nor is much of the peripheral condensed chromatin ; in fact, a polarized distribution of satellite DNA is evident. In Sertoli and spematid nuclei, satellite DNA is found in a small number of large heterochromatin blocks with which the nucleolus is associated; some of this material bears a relationship to the nuclear envelope in these cells also.  相似文献   

6.
Curvature of mouse satellite DNA and condensation of heterochromatin   总被引:20,自引:0,他引:20  
M Z Radic  K Lundgren  B A Hamkalo 《Cell》1987,50(7):1101-1108
Cloned, sequenced mouse satellite DNA exhibits properties characteristic of molecules that possess a stable curvature. Circularly permuted fragments containing the region predicted to bend were used to map the curvature relative to DNA sequence. The altered mobility of these fragments in polyacrylamide gels is reversed when gels are run in the presence of distamycin A, a drug that binds preferentially to AT-rich DNA. Treatment of living mouse cells with this drug dramatically reduces the condensation of centromeric heterochromatin, the exclusive location of satellite sequences. In situ hybridization of satellite probes to extended chromosomes at the electron microscope level shows that satellite does not comprise a single block but is distributed throughout the centromere region. Based on these experiments, we hypothesize that the structure of mouse satellite DNA is an important feature of centromeric heterochromatin condensation.  相似文献   

7.
The fine organization of the centromere structural heterochromatin (CSH) in a cell culture of calf trachea (TR) was studied by the methods of light and electron microscopy after fixation in native conditions and after treatments with water Henk's solutions and solutions of Ca2+ of different concentrations. In interphase nuclei the CSH forms compact blocks--the chromocentres, which are connected with the nuclear envelope or the nucleolus. The diameter of the main class of DNP fibers in the CSH, chromosomal arms and chromocentres after fixation of control cells and after treatment with 50% Henk's solution is 20-25 nm. 10-15 nm DNP fibers are largely found in the contacts with kinetochores. After 20% Henk's solution treatment 10-15 nm fibers predominate in the CSH and chromosomal arms. A chromonema--a 100 nm chromatin fiber--is detected in the CSH after treatments with different concentrations of Ca2+ solutions, as well after fixation in native conditions. The peculiarity of structural organization and properties of the calf CSH at interphase and mitosis as compared with analogous regions in mouse chromosomes are suggested to be connected with the composition of its DNA and proteins.  相似文献   

8.
9.
10.
Some properties of nonhistone proteins of rat liver chromatin (Mr 40 +/- 1 and 41 +/- 1 KD) are described. These proteins are abundant in monomeric particles formed at the early steps of chromatin fragmentation by Ca2+,Mg2+-DNase. The proteins are not extracted from chromatin by 5% HClO4 and 1 M NaCl, but can be extracted by 0.4 n H2SO4 and 2 M NaCl. Study on proteins binding to DNA demonstrated that in 0.05 M NaCl these proteins are bound both to bovine satellite DNA and to the plasmid pBR 322 DNA.  相似文献   

11.
12.
In isolated interphase mouse liver nuclei after hypotonic treatment only the chromocenters belonging to the pericentromeric heterochromatin remain in dense form while the main mass of a chromatin is completely decondensed. The centromeric nature of these chromocenters is demonstrated by their capability for C-banding and for hybridization with a satellite mouse DNA.  相似文献   

13.
In isolated mouse nuclei the chromocenters were shown to be the pericentromeric heterochromatin regions (PCHR). After the decreasing of bivalent ion concentration (0.1 mM Ca2+, 2 mM Mg2+) the main and peripheral parts of the chromatin remained on the contrary as the compact chromatin bodies. The additional ultrasound treatment of isolated nuclei in the presence of 0.1 mM Ca2+ with DNAase II and triton X-100 resulted in the species enriched by the condensed PCHR.  相似文献   

14.
15.
The eukaryote centromere was initially defined cytologically as the primary constriction on vertebrate chromosomes and functionally as a chromosomal feature with a relatively low recombination frequency. Structurally, the centromere is the foundation for sister chromatid cohesion and kinetochore formation. Together these provide the basis for interaction between chromosomes and the mitotic spindle, allowing the efficient segregation of sister chromatids during cell division. Although centromeric (CEN) DNA is highly variable between species, in all cases the functional centromere forms in a chromatin domain defined by the substitution of histone H3 with the centromere specific H3 variant centromere protein A (CENP-A), also known as CENH3. Kinetochore formation and function are dependent on a variety of regional epigenetic modifications that appear to result in a loop chromatin conformation providing exterior CENH3 domains for kinetochore construction, and interior heterochromatin domains essential for sister chromatid cohesion. In addition pericentric heterochromatin provides a structural element required for spindle assembly checkpoint function. Advances in our understanding of CENH3 biology have resulted in a model where kinetochore location is specified by the epigenetic mark left after dilution of CENH3 to daughter DNA strands during S phase. This results in a self-renewing and self-reinforcing epigenetic state favorable to reliably mark centromere location, as well as to provide the optimal chromatin configuration for kinetochore formation and function.  相似文献   

16.
Qu G  Dubeau L  Narayan A  Yu MC  Ehrlich M 《Mutation research》1999,423(1-2):91-101
Rearrangements in heterochromatin in the vicinity of the centromeres of chromosomes 1 and 16 are frequent in many types of cancer, including ovarian epithelial carcinomas. Satellite 2 DNA is the main sequence in the unusually long heterochromatin region adjacent to the centromere of each of these chromosomes. Rearrangements in these regions and hypomethylation of satellite 2 DNA are a characteristic feature of patients with a rare recessive genetic disease, ICF (immunodeficiency, centromeric region instability, and facial anomalies). In all normal tissues of postnatal somatic origin, satellite 2 DNA is highly methylated. We examined satellite 2 DNA methylation in ovarian tumors of different malignant potential, namely, ovarian cystadenomas, low malignant potential (LMP) tumors, and epithelial carcinomas. Most of the carcinomas and LMP tumors exhibited hypomethylation in satellite 2 DNA of both chromosomes 1 and 16. A comparison of methylation of these sequences in the three types of ovarian neoplasms demonstrated that there was a statistically significant correlation between the extent of this satellite DNA hypomethylation and the degree of malignancy (P<0.01). Also, there was a statistically significant association (P<0.005) between genome-wide hypomethylation and undermethylation of satellite 2 DNA among these 17 tumors. In addition, we found abnormal hypomethylation of satellite alpha DNA in the centromere of chromosome 1 in many of these tumors. Our findings are consistent with the hypothesis that one of the ways that genome-wide hypomethylation facilitates tumor development is that it often includes satellite hypomethylation which might predispose cells to structural and numerical chromosomal aberrations. Several of the proteins that bind to pericentromeric heterochromatin are known to be sensitive to the methylation status of their target sequences and so could be among the sensors for detecting abnormal demethylation and mediating effects on chromosome structure and stability.  相似文献   

17.
18.
Summary The liver chromatin fromMus musculus andAkodon molinae was separated in 8 fractions by differential centrifugation. Like fractions from both species showed approximately similar contents of DNA, equivalent ratios of histone to non-histone proteins, corresponding template activities and equal amounts of positive C-banded material. On the other hand, heavy chromatin fractions ofMus were highly enriched in satellite DNA whereas no satellite DNA was found inAkodon chromatin. Heavy chromatin fractions isolated by differential sedimentation have been usually homologued with the constitutive heterochromatin. The properties of the constitutive chromatin are discussed and the validity of the foregoing concept is challenged. It is proposed to define the constitutive heterochromatin as those chromatin regions comprising highly repeated DNA sequences clustered in restricted areas of chromosomes and not transcribed (satellite DNA).  相似文献   

19.
Here, we describe the cloning and further characterization of chicken ARBP, an abundant nuclear protein with a high affinity for MAR/SARs. Surprisingly, ARBP was found to be homologous to the rat protein MeCP2, previously identified as a methyl-CpG-binding protein. A region spanning 125 amino acids in the N-terminal halves is 96.8% identical between chicken ARBP and rat MeCP2. A deletion mutation analysis using Southwestern and band shift assays identified this highly conserved region as the MAR DNA binding domain. Alignment of chicken ARBP with rat and human MeCP2 proteins revealed six trinucleotide amplifications generating up to 34-fold repetitions of a single amino acid. Because MeCP2 was previously localized to pericentromeric heterochromatin in mouse chromosomes, we analyzed the in vitro binding of ARBP to various repetitive sequences. In band shift experiments, ARBP binds to two chicken repetitive sequences as well as to mouse satellite DNA with high affinity similar to that of its binding to chicken lysozyme MAR fragments. In mouse satellite DNA, use of several footprinting techniques characterized two high-affinity binding sites, whose sequences are related to the ARBP binding site consensus in the chicken lysozyme MAR (5'-GGTGT-3'). Band shift experiments indicated that methylation increased in vitro binding of ARBP to mouse satellite DNA two- to fivefold. Our results suggest that ARBP/MeCP2 is a multifunctional protein with roles in loop domain organization of chromatin, the structure of pericentromeric heterochromatin, and DNA methylation.  相似文献   

20.
The centromere is the DNA locus that dictates kinetochore formation and is visibly apparent as heterochromatin that bridges sister kinetochores in metaphase. Sister centromeres are compacted and held together by cohesin, condensin, and topoisomerase-mediated entanglements until all sister chromosomes bi-orient along the spindle apparatus. The establishment of tension between sister chromatids is essential for quenching a checkpoint kinase signal generated from kinetochores lacking microtubule attachment or tension. How the centromere chromatin spring is organized and functions as a tensiometer is largely unexplored. We have discovered that centromere chromatin loops generate an extensional/poleward force sufficient to release nucleosomes proximal to the spindle axis. This study describes how the physical consequences of DNA looping directly underlie the biological mechanism for sister centromere separation and the spring-like properties of the centromere in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号