首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The plasmids R1162 and pSC101 have origins of conjugative transfer (oriTs) and corresponding relaxases that are closely related. The oriTs are made up of a highly conserved core, where DNA is cleaved by the relaxase prior to transfer, and an inverted repeat that differs in size and sequence. We show that in each case the seven base pairs adjacent to the core and within one arm of the inverted repeat are sufficient to determine specificity. Within this DNA there are three AT base pairs located 4 bp from the core. Mutations in the AT base pairs suggest that the relaxase makes essential contacts at these locations to the minor groove of the DNA. The remaining four bases are different for each oriT and are both necessary and sufficient for stringent recognition of oriT by the pSC101 mobilization proteins. In contrast, the R1162 mobilization proteins have a much more relaxed requirement for the base sequence of this specificity region. As a result, the R1162 mobilization proteins can initiate transfer from a variety of sites, including those derived from the chromosome. The R1162 mobilization proteins could therefore contribute to the horizontal gene transfer of DNA from diverse sources.  相似文献   

2.
The primary DNA processing protein for conjugative mobilization of the plasmid R1162 is the transesterase MobA, which acts at a unique site on the plasmid, the origin of transfer (oriT). Both MobA and oriT are members of a large family of related elements that are widely distributed among bacteria. Each oriT consists of a highly conserved core and an adjacent region that is required for binding by its cognate MobA. The sequence of the adjacent region is important in determining the specificity of the interaction between the Mob protein and the oriT DNA. However, the R1162 MobA is active on the oriT of pSC101, another naturally occurring plasmid. We show here that MobA can recognize oriTs having different sequences in the adjacent region and, with varying frequencies, can cleave these oriTs at the correct position within the core. Along with the structure of the oriTs themselves, these characteristics suggest a model for the evolution of this group of transfer systems.  相似文献   

3.
The plasmid R1162 encodes proteins that enable its conjugative mobilization between bacterial cells. It can transfer between many different species and is one of the most promiscuous of the mobilizable plasmids. The plasmid-encoded protein MobA, which has both nicking and priming activities on single-stranded DNA, is essential for mobilization. The nicking, or relaxase, activity has been localized to the 186 residue N-terminal domain, called minMobA. We present here the 2.1 A X-ray structure of minMobA. The fold is similar to that seen for two other relaxases, TraI and TrwC. The similarity in fold, and action, suggests these enzymes are evolutionary homologs, despite the lack of any significant amino acid similarity. MinMobA has a well- defined target DNA called oriT. The active site metal is observed near Tyr25, which is known to form a phosphotyrosine adduct with the substrate. A model of the oriT substrate complexed with minMobA has been made, based on observed substrate binding to TrwC and TraI. The model is consistent with observations of substrate base specificity, and provides a rationalization for elements of the likely enzyme mechanism.  相似文献   

4.
DNA involved in the mobilization of broad-host-range plasmid R1162 was localized to a region of 2.7 kilobases within coordinates 3.4 to 6.1 kilobases on the R1162 map. By examining the transfer properties of plasmids containing cloned fragments of DNA from within this region, we showed that at least four trans-active products and a cis-active site (oriT) were involved in mobilization. A cloned DNA fragment of 155 base pairs was capable of providing full oriT activity. This fragment was located within 600 base pairs of DNA containing the origin of replication of R1162, and its nucleotide sequence and that of neighboring DNA were determined. Activation of oriT required R1162-encoded, trans-acting products. Deletions which resulted in the loss of one or more of these had a variable effect on transfer efficiency and indicated the presence of both essential and nonessential Mob products. Regions encoding these products flanked oriT and in one case appeared to overlap a gene essential for plasmid replication. The implications of these findings with respect to the broad host range of R1162 are discussed.  相似文献   

5.
The broad-host-range plasmid R1162 is conjugally mobilized at high frequency by the IncP-1 plasmid R751 but is poorly mobilized by pOX38, a derivative of the F factor. In both cases, the origin of transfer (oriT) and the Mob proteins of R1162 are required, indicating that these plasmids are mobilized by similar mechanisms. R1162 encodes a primase, essential for vegetative replication of the plasmid, that is made both as a separate protein and as the carboxy-terminal domain of MobA, one of the R1162 mobilization proteins (P. Scholz, V. Haring, B. Wittman-Liebold, K. Ashman, M. Bagdasarian, and E. Scherzinger, Gene 75:271-288, 1989). When R751 is the mobilizing vector, the primase is not required for mobilization of plasmids containing cloned mob-oriT R1162 DNA. However, detectable mobilization of such plasmids by pOX38 requires both the primase and its cognate initiation site, oriented for synthesis of the complement to the transferred strand. The long form of the primase is required for optimal transfer: R1162 replicons lacking this form also are not transferred detectably by pOX38 and are less well mobilized by R751. The distance between oriT and the primase initiation site affects the frequency of mobilization, and this effect is polar in the direction of transfer. Our results indicate that the R1162 primase is active in mobilization of R1162 and suggest that the MobA-linked form is an adaptation increasing its effectiveness during transfer.  相似文献   

6.
7.
The relaxase of the plasmid R1162 is a large protein essential for conjugative transfer and containing two different and physically separate catalytic activities. The N-terminal half cleaves one of the DNA strands at the origin of transfer (oriT) and becomes covalently linked to the 5' terminal phosphate; the C-terminal half is a primase essential for initiation of plasmid vegetative replication. We show here that the two parts of the protein are independently transported by the type IV pathway. Part of the domain containing the catalytic activity, as well as an adjacent region, is required in each case, but the required regions do not physically overlap. Both transport systems contribute to the overall frequency of conjugative transfer. MobB is a small protein, encoded within mobA but in a different reading frame, that stabilizes the relaxase at oriT. MobB is required for efficient type IV transport of both the complete relaxase and its two, separate functional halves. MobB inserts into the membrane and could thus stabilize the association between the relaxase and the type IV transfer apparatus.  相似文献   

8.
During conjugation, a single strand of DNA is cleaved at the origin of transfer (oriT) by the plasmid-encoded relaxase. This strand is then unwound from its complement and transferred in the 5'-to-3' direction, with the 3' end likely extended by rolling-circle replication. The resulting, newly synthesized oriT must then be cleaved as well, prior to recircularization of the strand in the recipient. Evidence is presented here that the R1162 relaxase contains only a single nucleophile capable of cleaving at oriT, with another molecule therefore required to cleave at a second site. An assay functionally isolating this second cleavage shows that this reaction can take place in the donor cell. As a result, there is a flux of strands with free 3' ends into the recipient. These ends are susceptible to degradation by exonuclease I. The degree of susceptibility is affected by the presence of an uncleaved oriT within the strand. A model is presented where these internal oriTs bind and trap the relaxase molecule covalently bound to the 5' end of the incoming strand. Such a mechanism would result in the preferential degradation of transferred DNA that had not been properly cleaved in the donor.  相似文献   

9.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

10.
R1162 is efficiently comobilized during conjugative transfer of the self-transmissible plasmid R751. Bacteriophage M13 derivatives that contain two directly repeated copies of oriT, the site on R1162 DNA required in cis for mobilization, were constructed. Phage DNA molecules underwent recombination during infection of Escherichia coli, with the product retaining a single functional copy of oriT. Recombination was strand specific and depended on R1162 gene products involved in mobilization, but did not require the self-transmissible plasmid vector. Two genes were identified, one essential for recombination and the other affecting the frequency of recombination. Recombination of bacteriophage DNA could form the basis of a simple model for some of the events occurring during conjugation without the complexity of a true mating system.  相似文献   

11.
oriT, the region required in cis for conjugative mobilization of broad host-range plasmid R1162, has been localized to a 38 base-pair segment of DNA. The oriT DNA is also required for conjugation-dependent recombination. Point mutations at the HinPI cleavage site within oriT affect both mobilization and recombination, and the crossover location has been mapped to this site. An inverted repeat ten base-pairs from the recombination site is also involved in mobilization and recombination, and may be a recognition site for proteins involved in cleavage of the oriT DNA. The properties of conjugation-dependent recombination suggest that mobilization entails the formation of a linear intermediate that is transferred with both a unique origin and polarity.  相似文献   

12.
Genetic and biochemical characterization of TraA, the relaxase of symbiotic plasmid pRetCFN42d from Rhizobium etli, is described. After purifying the relaxase domain (N265TraA), we demonstrated nic binding and cleavage activity in vitro and thus characterized for the first time the nick site (nic) of a plasmid in the family Rhizobiaceae. We studied the range of N265TraA relaxase specificity in vitro by testing different oligonucleotides in binding and nicking assays. In addition, the ability of pRetCFN42d to mobilize different Rhizobiaceae plasmid origins of transfer (oriT) was examined. Data obtained with these approaches allowed us to establish functional and phylogenetic relationships between different plasmids of this family. Our results suggest novel characteristics of the R. etli pSym relaxase for previously described conjugative systems, with emphasis on the oriT cis-acting preference of this enzyme and its possible biological relevance.  相似文献   

13.
A segment of R1162 DNA containing genes for conjugative mobilization (Mob) and the origin of transfer (oriT) was integrated into the Escherichia coli chromosome. Bacterial genes were transferred in a polar fashion during conjugative mobilization of the integrated segment by a self-transmissible plasmid vector. The direction of transfer, together with the properties of mutated derivatives of oriT, indicate that initial cleavage of oriT, and subsequent religation after transfer, entail different mechanisms that can be distinguished genetically.  相似文献   

14.
The broad-host-range, multicopy plasmid R1162 is efficiently mobilized during conjugation by the self-transmissible plasmid R751. The relaxosome, a complex of plasmid DNA and R1162-encoded proteins, forms at the origin of transfer ( oriT ) and is required for mobilization. Transfer is initiated by strand- and site-specific nicking of the DNA within this structure. We show by probing with potassium permanganate that oriT DNA is locally melted within the relaxosome, in the region from the inverted repeat to the site that is nicked. Mutations in this region of oriT , and in genes encoding the protein components of the relaxosome, affect both nicking and melting of the DNA. The nicking protein in the relaxosome is MobA, which also ligates the transferred linear, single strand at the termination of a round of transfer. We propose that there is an underlying similarity in the substrates for these two MobA-dependent, DNA-processing reactions. We also show that MobA has an additional role in transfer, beyond the nicking and resealing of oriT DNA.  相似文献   

15.
The mobilization region of plasmid CloDF13 was localized to a 3.6 kb DNA segment that was analysed by transposon mutagenesis and DNA sequencing. Analysis of the DNA sequence allowed us to identify two mobilization genes and the CloDF13 origin of conjugative transfer (oriT), which was localized to a 661 bp segment at one end of the mobilization (Mob) region. Thus, the overall organization was oriT-mobB-mobC. Plasmid CloDF13 DNA was isolated mainly as a relaxed form that contained a unique strand and site-specific cleavage site (nic). The position of nic was mapped to the sequence 5'-GGGTG/GTCGGG-3' by primer extension and sequencing reactions. Analysis of Mob- insertion mutants showed that mobC was essential for CloDF13 relaxation in vivo. The sequence of mobC predicts a protein (MobC) of 243 amino acids without significant similarity to previously reported relaxases. In addition to MobC, the product of mobB was also required for CloDF13 mobilization and for oriT relaxation in vivo. mobB codes for a protein (MobB) of 653 amino acids with three predicted transmembrane segments at the N-terminus and the NTP-binding motifs characteristic of the TraG family of conjugative coupling proteins. Membership of the TraG family was confirmed by the fact that CloDF13 mobilization by plasmid R388 was independent of TrwB and only required PILW. However, contrary to the activities found for other coupling proteins, MobB was required for efficient oriT cleavage in vivo, suggesting an additional role for this particular protein during oriT processing for mobilization. Additionally, the cleavage site produced by the joint activities of MobB and MobC was shown to contain unblocked ends, suggesting that no stable covalent intermediates between relaxase and DNA were formed during the nic cleavage reaction. This is the first report of a conjugative transfer system in which nic cleavage results in a free nicked-DNA intermediate.  相似文献   

16.
When two, directly-repeated copies of the origin of transfer (oriT) of the conjugatively mobilizable, broad host-range plasmid R1162 are cloned into bacteriophage M13mp9 DNA, they undergo recombination in the presence of one of the R1162-encoded proteins required for mobilization [Meyer, R. (1989) J. Bacteriol., 171, 799-806]. Mutations in the outer arm of the inverted repeat within oriT inhibit this recombination. These mutations also affect a late step in transfer. We propose that recombination on the phage DNA models the processing of single-stranded DNA after entry into a recipient cell. The two, directly-repeated oriTs are not equivalent during the recombination reaction, because they are differently affected by the outer-arm mutations. A mutation was also isolated that reduces the specificity of the cleavage site in one of the two oriTs. Together, the results with the mutations suggest that phage recombinants can form only when the first cleavage occurs at one of the two oriTs. This is followed by the resulting free 3' end joining to the 5' end at the cleavage site of the other oriT.  相似文献   

17.
Plasmid pTC-F14 is a 14.2-kb plasmid isolated from Acidithiobacillus caldus that has a replicon that is closely related to the promiscuous, broad-host-range IncQ family of plasmids. The region containing the mobilization genes was sequenced and encoded five Mob proteins that were related to those of the DNA processing (Dtr or Tra1) region of IncP plasmids rather than to the three-Mob-protein system of the IncQ group 1 plasmids (e.g., plasmid RSF1010 or R1162). Plasmid pTC-F14 is the second example of an IncQ family plasmid that has five mob genes, the other being pTF-FC2. The minimal region that was essential for mobilization included the mobA, mobB, and mobC genes, as well as the oriT gene. The mobD and mobE genes were nonessential, but together, they enhanced the mobilization frequency by approximately 300-fold. Mobilization of pTC-F14 between Escherichia coli strains by a chromosomally integrated RP4 plasmid was more than 3,500-fold less efficient than the mobilization of pTF-FC2. When both plasmids were coresident in the same E. coli host, pTC-F14 was mobilized at almost the same frequency as pTF-FC2. This enhanced pTC-F14 mobilization frequency was due to the presence of a combination of the pTF-FC2 mobD and mobE gene products, the functions of which are still unknown. Mob protein interaction at the oriT regions was unidirectionally plasmid specific in that a plasmid with the oriT region of pTC-F14 could be mobilized by pTF-FC2 but not vice versa. No evidence for any negative effect on the transfer of one plasmid by the related, potentially competitive plasmid was obtained.  相似文献   

18.
Integrating conjugative elements (ICEs) are self-transmissible, mobile elements that are widespread among bacteria. Following their excision from the chromosome, ICEs transfer by conjugation, a process initiated by a single-stranded DNA break at a specific locus called the origin of transfer (oriT). The SXT/R391 family of ICEs includes SXT(MO10), R391, and more than 25 related ICEs found in gammaproteobacteria. A previous study mapped the oriT locus of SXT(MO10) to a 550-bp intergenic region between traD and s043. We suspected that this was not the correct oriT locus, because the identical traD-s043 region in R391 and other SXT/R391 family ICEs was annotated as a gene of an unknown function. Here, we investigated the location and structure of the oriT locus in the ICEs of the SXT/R391 family and demonstrated that oriT(SXT) corresponds to a 299-bp sequence that contains multiple imperfect direct and inverted repeats and is located in the intergenic region between s003 and rumB'. The oriT(SXT) locus is well conserved among SXT/R391 ICEs, like R391, R997, and pMERPH, and cross-recognition of oriT(SXT) and oriT(R391) by R391 and SXT(MO10) was demonstrated. Furthermore, we identified a previously unannotated gene, mobI, located immediately downstream from oriT(SXT), which proved to be essential for SXT(MO10) transfer and SXT(MO10)-mediated chromosomal DNA mobilization. Deletion of mobI did not impair the SXT(MO10)-dependent transfer of the mobilizable plasmid CloDF13, suggesting that mobI has no role in the assembly of the SXT(MO10) mating pair apparatus. Instead, mobI appears to be involved in the recognition of oriT(SXT).  相似文献   

19.
20.
The frequency of conjugal mobilization of plasmid R1162 is decreased approximately 50-fold if donor cells lack MobC, one of the plasmid-encoded proteins making up the relaxosome at the origin of transfer ( oriT  ). The absence of MobC has several different effects on oriT DNA. Site- and strand-specific nicking by MobA protein is severely reduced, accounting for the lower frequency of mobilization. The localized DNA strand separation required for this nicking is less affected, but becomes more sensitive to the level of active DNA gyrase in the cell. In addition, strand separation is not efficiently extended through the region containing the nick site. These effects suggest a model in which MobC acts as a molecular wedge for the relaxosome-induced melting of oriT DNA. The effect of MobC on strand separation may be partially complemented by the helical distortion induced by supercoiling. However, MobC extends the melted region through the nick site, thus providing the single-stranded substrate required for cleavage by MobA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号