首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human fibroblasts (SL66) were cultured in medium containing 35SO2-4 to label the glycosaminoglycans (GAGs). The cells were then detached from the culture dish to leave radioactively-labeled components of the extracellular matrix, hereafter termed 35S-labeled substrate-attached material. When unlabeled SL66 fibroblasts were plated onto this 35S-labeled substrate-attached material, the cells mediated two distinct events: (a) release of radioactivity from the substrate-attached material into the medium; (b) degradation of certain glycosaminoglycans into radioactive components of very low molecular weight including free radioactive sulfate. In the presence of mannose 6-phosphate, however, the degradation of the substrate-attached material by SL66 cells was partially inhibited. Analyses of this effect in terms of the dose-response curve, saccharide specificity, ammonium chloride sensitivity, and the requirement for cells suggest that both an intracellular compartment and the mannose 6-phosphate receptor that binds lysosomal enzymes at the cell surface may play important roles in the turnover and degradation of certain proteoglycans in substrate-attached material.  相似文献   

2.
Fibroblasts derived from patients with Werner's syndrome (WS) were incubated with radioactive sulfate to study the incorporation of 35S into glycosaminoglycans (GAGs). The accumulation of cell-associated 35S radioactivity in the GAGs of WS fibroblasts was consistently higher than parallel accumulation in normal human fibroblasts, but was substantially less than in fibroblasts derived from patients with Hurler's syndrome (HS). However, when fibroblasts were labeled with 35SO4(2-), trypsinized to remove extracellular and pericellular radioactive GAGs, replated, and chased to follow the fate of the intracellular radioactivity, both WS and normal cells showed a rapid release of the intracellular 35S, while HS cells showed little or no loss of intracellular radioactivity. The radioactivity released from WS and normal cells was of low molecular weight (LMW), eluting from gel filtration columns at the same position as free sulfate. These results establish that WS cells degrade intracellular sulfated GAGs and argue against the hypothesis that a defect in GAG degradation pathways is the basis for the increased level of cell-associated GAGs. Other possible explanations for the increased cell-associated [35S]GAGs in WS cells as compared with normal cells were also considered: increased GAG sulfation; an increase in GAG chain length; an increased rate of GAG synthesis; and a decreased rate of shedding of cell surface proteoglycan into the medium. No difference between normal and WS fibroblasts in any of the above parameters was observed. These results strongly imply that the primary biochemical defect in WS fibroblasts does not involve sulfated GAG metabolism.  相似文献   

3.
Confluent cultures of rat muscle fibroblastic cells respond by increased glycosaminoglycan (GAG) synthesis when cultured in medium containing a solubilized bone matrix fraction (SBM) at a concentration of 100 micrograms/ml. The metabolism of the GAG associated with the cell pellet, the cell surface and the tissue culture medium fractions was studied, in the presence and absence of SBM, by measuring the incorporation of radioactivity from [3H]glucosamine and [35S]SO4 into the isolated GAG. Net synthesis of hyaluronic acid and of chondroitin sulfate in the medium fraction increased more rapidly in cultures containing SBM compared to controls, and the accumulation of labelled GAG in the medium of the treated cultures was approximately linear with respect to the length of incubation. The addition of SBM also resulted in increased incorporation of 3H and of 35S into the GAG of the cell surface and cell pellet fractions. In these fractions, stimulation of incorporation of radioactivity occurred in two waves: an early, relatively minor increase and a later relatively major increase. The relatively major stimulation of radioactivity into the GAG of the cell surface fraction occurred between 24 and 48 h and was independent of any apparent effect of serum.  相似文献   

4.
Human and bovine bone matrices were extracted with salt solutions of different composition and the extracts tested for stimulation of incorporation of radioactivity from [3H]glucosamine and [35S]SO4 into the hyaluronic acid and chondroitin sulfate of the cell pellet, the cell surface and the medium fractions of human synovial cells in culture. Stimulatory activity was extracted with a solution of 0.3 M EDTA in 2.5 M NaCl from bovine but not human bone. Subsequent extraction of the residues with 4 M guanidinium hydrochloride yielded activity from both matrices. A major stimulation of incorporation of radioactivity was observed in the cell surface fractions. Human synovial cells constitute a more sensitive assay system for the stimulatory activity than rabbit synovial cells.  相似文献   

5.
This paper describes proteoglycan catabolism by adult bovine articular cartilage treated with retinoic acid as a means of stimulating the loss of this macromolecule from the extracellular matrix of cartilage. Addition of retinoic acid (10(-12)-10(-6) M) to adult bovine articular cartilage which had been labeled with [35S]sulfate for 6 h after 5 days in culture, resulted in a dose-dependent increase in the rate of loss of 35S-labeled proteoglycans from the matrix of the tissue. Concomitant with this loss was a decrease in the proteoglycan content of the tissue. Incubation of cultures treated with 1 microM retinoic acid, at 4 degrees C, or with 0.5 mM cycloheximide, resulted in a significant decrease in the rate of retinoic acid-induced loss of proteoglycans and demonstrated cellular involvement in this process. Analysis of the 35S-labeled proteoglycans remaining in the matrix showed that the percentage of radioactivity associated with the small proteoglycan species extracted from the matrix of articular cartilage explants labeled with [35S]sulfate after 5 days in culture was 15% and this increased to 22% in tissue maintained in medium alone. In tissue treated with 1 microM retinoic acid for 6 days, the percentage of radioactivity associated with the small proteoglycan was 58%. Approximately 93% of the 35S-labeled proteoglycans released into the medium of control and retinoic acid-treated cultures was recovered in high density fractions after CsCl gradient centrifugation and eluted on Sepharose CL-2B as a broad peak with a Kav of 0.30-0.37. Less than 17% of these proteoglycans was capable of aggregating with hyaluronate. These results indicate that in both control and retinoic acid-treated cultures the larger proteoglycan species is lost to the medium at a greater rate than the small proteoglycan species. The effect of retinoic acid on proteoglycan turnover was shown to be reversible. Cartilage cultures maintained with retinoic acid for 1 day then switched to medium with 20% (v/v) fetal calf serum for the remainder of the culture period exhibited decreased rates of loss of 35S-labeled proteoglycans from the matrix and increased tissue hexuronate contents to levels near those observed in tissue maintained in medium with 20% (v/v) fetal calf serum throughout. Furthermore, following switching to 20% (v/v) fetal calf serum, the relative proportions of the 35S-labeled proteoglycan species remaining in the matrix of these cultures were similar to those of control cultures.  相似文献   

6.
Macrophages cocultured with rabbit aortic smooth muscle cells at a ratio of 1:3 degraded all the 35S-labeled heparan sulfate proteoglycan from the smooth muscle surface into free sulfate (Kav of 0.84 on Sepharose 6B). Concomitantly, the same macrophages induced a decrease in the volume fraction of myofilaments (Vvmyo) of the smooth muscle cells and a decrease in alpha-actin mRNA as a percentage of total actin mRNA. Both macrophage lysosomal lysate at neutral pH and heparinase degraded cell-free 35S-labeled matrix deposited by smooth muscle cells into fragments which eluted at a Kav of 0.63 and which were identified as heparan sulfate chains by their complete degradation in the presence of low pH nitrous acid. At acid pH the macrophage lysosomal lysate completely degraded the heparan sulfate to free sulfate (Kav 0.84). Both macrophage lysosomal lysate and commercial heparinase at neutral pH induced smooth muscle phenotypic change while other enzymes such as trypsin and chondroitin ABC lyase had no effect. It was therefore suggested that the active factor present in the macrophages is a lysosomal heparan sulfate-degrading endoglycosidase (heparinase). Only a small amount of heparan sulfate-degrading activity was released into the incubation medium by living macrophages, and there was no heparinase activity on their isolated plasma membranes, although proteolytic enzymes were evident in both instances. In pulse-chase studies, high Vvmyo smooth muscle cells were seen to constantly internalize and degrade 35S-labeled heparan sulfate proteoglycan from their own pericellular compartment, suggesting that this may be the mechanism by which smooth muscle phenotype is maintained under normal circumstances and that removal of heparan sulfate from the surface of smooth muscle cells and its degradation by macrophages temporarily interrupts this process, inducing smooth muscle phenotypic change.  相似文献   

7.
Glycyl-L-histidyl-L-lysine-copper (II) complex (GHK-Cu) is a naturally occurring tripeptide with potential healing properties. We studied the effect of GHK-Cu on the synthesis of glycosaminoglycans (GAGs) by normal human fibroblasts in culture. Cells were incubated with 3H glucosamine and 35S sulfate and the radioactivity of isolated GAGs was determined. GHK-Cu induced a dose-dependent increase of the synthesis of total GAGs secreted into the culture medium and those associated with the cell layer. The effect of GHK-Cu was biphasic with a maximal stimulation at 10(-9) to 10(-8) M. At higher concentrations, the rate of synthesis returned progressively to that of control cultures. Electrophoretic analysis of the different GAG populations showed that GHK-Cu preferentially stimulated the synthesis of extracellular dermatan sulfate and cell layer associated heparan sulfate. No influence of GHK-Cu on the synthesis of hyaluronic acid was observed. GHK-Cu stimulation of GAG synthesis may be one of the phenomenons implicated in the wound healing properties of the peptide.  相似文献   

8.
We determined the amounts of [35S]-glycosaminoglycans (GAGs) found on the intracellular, pericellular and extracellular compartments of primary cultures of astrocytes derived from newborn rat cortex and cerebellum in vitro. Our results show that the greatest portion of newly synthesized GAGs were found in different cellular compartments, depending on the source of the astrocytes. In the cells derived from the cerebellum, the proportion of [35S]-GAGs secreted to the culture medium preponderates over the amount found in the two other compartments, whereas cells derived from the cortex accumulated higher proportions of [35S]-GAGs in the intracellular compartment than in the two other compartments. Cortical and cerebellar glial cells synthesised and secreted heparan sulfate (HS) and chondroitin 4-sulfate (C-4S). HS was predominantly accumulated on the pericellular surface, while C-4S was mostly secreted to the culture medium. Beside the difference on the distribution of total [35S]-GAGs among the three cellular compartments, no difference was observed on the relative proportions of HS and C-4S within each compartment. By defining the source of GAGs, the present study may help to complement and extend information on biosynthesis of these compounds by mammalian glial cells.  相似文献   

9.
The pericellular matrix fibers of cultured human fibroblasts contain fibronectin, other glycoproteins, and heparan and chondroitin sulfate proteoglycans. In the present study, cell-free pericellular matrices were isolated from metabolically labeled fibroblast cultures. The isolated matrices were digested with heparinase from Flavobacterium heparinum, and then analyzed for sulfated glycosaminoglycans (GAGs). Nitrous acid degradation was used to distinguish the N-sulfated GAGs (heparan sulfate) from chondroitin sulfate. Fibronectin and the other major matrix polypeptides were studied using gel electrophoresis, enzyme immunoassay and immunofluorescence. Upon heparinase digestion, greater than 95% of sulfated GAGs were degraded in the matrix without detectable release of fibronectin or other matrix polypeptides or alteration of the fibrillar matrix structure. We conclude that in fibroblast cultures the integrity of the fibrillar matrix is independent of sulfated GAGs. Together with earlier observations, this suggests that filamentous polymerization of fibronectin forms the backbone of early connective tissue matrix.  相似文献   

10.
We studied the metabolism of sulfated cell-surface macromolecules in dog tracheal epithelial cells in primary culture. To examine the time-course and rate of appearance of sulfated macromolecules at the cell surface, the cells were pulsed with 35SO4 for short periods (5-15 min), and the incubation medium was sampled for spontaneously released macromolecules (basal secretions) and for release induced by trypsin (trypsin-accessible secretions). Trypsin-accessible 35S-labeled macromolecules appeared on the cell surface within 5-10 min, increased linearly, and plateaued by 40 min; the median transit time for 35S-labeled macromolecules to reach the cell surface was 21 min. 35S-labeled macromolecules in basal secretions increased with a similar time-course, reaching a plateau by 40 min. Incorporation of [3H]serine into the protein moiety of trypsin-accessible macromolecules occurred more slowly; trypsin-accessible 3H-labeled macromolecules were barely detectable at 1 h and increased to a maximum after 2 h, suggesting the presence of a preformed pool of nonsulfated core protein. Pretreatment with cycloheximide, an inhibitor of protein synthesis, decreased trypsin-accessible 35S-labeled macromolecules log-linearly depending on the duration of pretreatment providing an estimate of the rate of depletion of the core protein pool (t1/2 = 32 min). During continuous exposure to 35SO4, 35S-labeled macromolecules accumulated on the cell surface (trypsin-accessible compartment) for 16 h, at which point the cell-surface pool was saturated (t1/2 = 7.5 h). After pulse-labeling the cells with 35SO4 for 15 min, the 35S-labeled macromolecules disappeared continuously from the cell surface (t1/2 = 4.6 h), and 79% of the radioactivity was recovered in the medium as nondialyzable macromolecules. Release of the 35S-labeled macromolecules from the cell surface was abolished at 4 degrees C, indicative of an energy-dependent process, but multiple proteinase inhibitors did not affect the release. We conclude that sulfate is metabolized rapidly into epithelial cell-surface macromolecules, which accumulate continuously into a relatively large cell-surface pool, before they are released by an undefined energy-dependent mechanism.  相似文献   

11.
Newly synthesized porcine tubular epithelial cell proteoglycans were labeled in vitro with Na2[35S]SO4. At the beginning of the labeling period (24 h) [35S] sulfate incorporated into macromolecules was measured following PD-10 chromatography. There was a significant reduction in the amount of 35S-labeled macromolecules isolated from polycystic cells compared to that from normal cells. The distribution of recovered radiolabeled material among the medium, cell surface, and intracellular fractions was similar for both normal and polycystic cells. Analysis of the proteoglycans in polycystic cells demonstrated that 86 and 73% of 35S-labeled macromolecules were of the heparan sulfate type in polycystic and normal cells, respectively. The remainder was chondroitin sulfate. Proteoglycans were characterized using DEAE-Sephacel ion-exchange chromatography, chondroitinase ABC, heparitinase, and nitrous acid digestion followed by Sepharose CL-4B gel permeation chromatography. The majority of radiolabeled material in the medium, cell surface, and intracellular fractions eluted between 0.35 and 0.39 M NaCl. However, a second peak (peak II) that eluted at 0.25 M NaCl was found in the medium from polycystic cells. This peak accounted for 27% of the total macromolecules secreted into the medium. Proteoglycans in the major peak were susceptible to nitrous acid and chondroitinase ABC digestion. A similar proportion of peak II was degraded by chondroitinase ABC. However, the remainder was only slightly susceptible to treatment with nitrous acid or heparitase. In normal cells a small amount of material eluted at a similar low charge; the proteoglycans were the same as those found in the major peak and appeared as a shoulder on this peak.  相似文献   

12.
The human colon cancer cell line Caco-2 cultured in vitro displayed morphological differentiation which was shown to be a growth-related event. We have investigated this phenomenon further in relation to the cell surface glycosaminoglycans produced by growing (5-day, i.e., prior to differentiation) and confluent (9-day, i.e., after morphological and functional differentiation) cultures. Neosynthesized [35S]glycosaminoglycans were purified on DEAE-cellulose; at confluency, they were bound more strongly to the column than the corresponding fractions from the growing cells. Analysis of Kav values of heparan sulfate and chondroitin sulfates from growing and confluent cells indicated an increase in chain length of both glycosaminoglycans in morphologically differentiated cells. Heparan sulfate was the main 35S-labeled glycosaminoglycan of the cell surface of both 5-day and 9-day cultures. Paper chromatography of the unsaturated disaccharides obtained by chondroitinase digestion showed that chondroitin sulfate chains were primarily 6-sulfated in the 2 studied extracts. Heparan sulfate chains were isolated as chondroitinase-resistant material and treated with nitrous acid. Analysis of N- and O-sulfate group-related radioactivity showed an increase in the amount of 35S-label in the form of N-sulfate groups and an increase in the O-35S-sulfation pattern in heparan sulfate from morphologically differentiated cells. Thus, the structural features of both chondroitin sulfates and heparan sulfate were significantly different when the growing cells became morphologically differentiated.  相似文献   

13.
Several microbial pathogens have been reported to interact with glycosaminoglycans (GAGs) on cell surfaces and in the extracellular matrix. Here we demonstrate that M protein, a major surface-expressed virulence factor of the human bacterial pathogen, Streptococcus pyogenes, mediates binding to various forms of GAGs. Hence, S. pyogenes strains expressing a large number of different types of M proteins bound to dermatan sulfate (DS), highly sulfated fractions of heparan sulfate (HS) and heparin, whereas strains deficient in M protein surface expression failed to interact with these GAGs. Soluble M protein bound DS directly and could also inhibit the interaction between DS and S. pyogenes. Experiments with M protein fragments and with streptococci expressing deletion constructs of M protein, showed that determinants located in the NH2-terminal part as well as in the C-repeat region of the streptococcal proteins are required for full binding to GAGs. Treatment with ABC-chondroitinase and HS lyase that specifically remove DS and HS chains from cell surfaces, resulted in significantly reduced adhesion of S. pyogenes bacteria to human epithelial cells and skin fibroblasts. Together with the finding that exogenous DS and HS could inhibit streptococcal adhesion, these data suggest that GAGs function as receptors in M protein-mediated adhesion of S. pyogenes.  相似文献   

14.
Confluent cultured human lung fibroblasts were labeled with 35SO4(2-). After 48 h of labeling, the pericellular matrix was prepared by Triton X-100 and deoxycholate extraction of the monolayers. Heparan sulfate proteoglycan (HSPG) accounted for nearly 80% of the total matrix [35S]proteoglycans. After solubilization in 6 M guanidinium HCl and cesium chloride density gradient centrifugation, the majority (78%) of these [35S] HSPG equilibrated at an average buoyant density of 1.35 g/ml. This major HSPG fraction was purified by ion-exchange chromatography on Mono Q and by gel filtration on Sepharose CL-4B, and further characterized by gel electrophoresis and immunoblotting. Intact [35S]HSPG eluted with Kav 0.1 from Sepharose CL-4B, whereas the protein-free [35S]heparan sulfate chains, obtained by alkaline borohydride treatment of the proteoglycan fractions, eluted with Kav 0.45 (Mr approximately 72,000). When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, core (protein) preparations, obtained by heparitinase digestion of 125I-labeled HSPG fractions, yielded one major labeled band with apparent molecular mass of approximately 300 kDa. Reduction with beta-mercaptoethanol slightly increased the apparent Mr of the labeled band, suggesting a single polypeptide structure and the presence of intrachain disulfide bonds. Immunoadsorption experiments and immunostaining of electrophoretically separated heparitinase-digested core proteins with monoclonal antibodies raised against matrix and cell surface-associated HSPG suggested that the major matrix-associated HSPG of cultured human lung fibroblasts is distinct from the HSPG that are anchored in the membranes of these cells. Binding studies suggested that this matrix HSPG interacts with several matrix components, both through its glycosaminoglycan chains and through its heparitinase-resistant core. Core (protein) interactions seem to be responsible for the association of the proteoglycan with the extracellular matrix.  相似文献   

15.
A rat hepatocyte cell line was cultured in Higuchi's medium with fetal calf serum and insulin and labeled with 35SO2/4-. The cells were treated with a number of ligands to displace the heparan 35SO4 proteoglycan (HSPG) from the pericellular matrix. Maximum release was obtained with D-mannose-6-PO4 (50 mM), D-glucose-6-PO4 (50 mM), myo-inositol-2-PO4 (2-5 mM), myo-inositol hexaphosphate (2-5 mM), and DL-myo-inositol-1-PO4 (1-2 mM). D-myo-Inositol-1,3,4-(PO4)3 (1 mM) and L-myo-inositol-1-PO4 (2 mM) were intermediate in their ability to release the cell surface HSPG, whereas heparin (2 mg/ml), yeast phosphomannan (4 mg/ml), D-xylose-1-PO4 (50 mM), D-glucose-6-SO4 (50 mM), and myo-inositol hexasulfate (5 mM) were ineffective. When 35SO2/4- was added to cell cultures, the total cell surface HSPG increased linearly, but the percentage of the total cell surface [35SO4]HSPG that was released by myo-inositol-PO4 increased with time during the labeling period, reaching a maximum of 65% after 5 h. When cells were labeled for 12 h without insulin in the medium, the maximum amount of cell surface HSPG that was released by myo-inositol-PO4 was reduced to 30%. However, when cells labeled in the absence of insulin were treated with phosphatidylinositol-specific phospholipase C and then myo-inositol-PO4, the release of the cell surface [35SO4]HSPG was increased to 73%. When the [35SO4]HSPG that was released from the cell surface by treatment with myo-inositol-PO4 was added to cultures of unlabeled hepatocytes, it was taken up very rapidly and a portion of the internalized HSPG was converted to free heparan SO4 chains which appeared in the nucleus. Uptake was Ca2+- and Mg2+-independent. The amount of [35SO4]HSPG taken up was markedly reduced when the myo-inositol-PO4-releasable [35SO4]HSPG was pretreated with trypsin, thermolysin, alkaline borohydride, or alkaline phosphatase. When the cells were grown in inositol-deficient medium or in the presence of myo-inositol-PO4, the amount of heparan SO4 found in the nucleus was markedly reduced, and the cells no longer exhibited contact inhibition. These effects of myo-inositol deficiency on the growth and nuclear heparan SO4 were accentuated by addition of LiCl to the cultures to prevent phosphatidylinositol synthesis from the endogenous myo-inositol-PO4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Most lysosomal enzymes require mannose 6‐phosphate (M6P) residues for efficient receptor‐mediated lysosomal targeting. Although the lack of M6P residues results in missorting and hypersecretion, selected lysosomal enzymes reach normal levels in lysosomes of various cell types, suggesting the existence of M6P‐independent transport routes. Here, we quantify the lysosomal proteome in M6P‐deficient mouse fibroblasts (PTki) using Stable Isotope Labeling by Amino acids in Cell culture (SILAC)‐based comparative mass spectrometry, and find unchanged amounts of 20% of lysosomal enzymes, including cathepsins D and B (Ctsd and Ctsb). Examination of fibroblasts from a new mouse line lacking both M6P and sortilin, a candidate for M6P‐independent transport of lysosomal enzymes, revealed that sortilin does not act as cargo receptor for Ctsb and Ctsd. Using fibroblast lines deficient for endocytic lipoprotein receptors, we could demonstrate that both LDL receptor and Lrp1 mediate the internalization of non‐phosphorylated Ctsb and Ctsd. Furthermore, the presence of Lrp1 inhibitor increased the secretion of Ctsd from PTki cells. These findings establish Lrp1 and LDL receptors in M6P‐independent secretion‐recapture targeting mechanism for lysosomal enzymes.   相似文献   

17.
The ability of cultured rat fibroblasts to phagocytose rat peritoneal mast cell granules has been previously demonstrated by light and electron microscopy. To determine if the heparin matrix of ingested granules could be degraded by fibroblasts after phagocytosis, the heparin within peritoneal mast cells was labeled with [35S]sulfate in vivo. The 35S-labeled rat peritoneal mast cells were purified and their granules were isolated and shown to contain [35S]heparin proteoglycan. Incubation of [35S]heparin proteoglycan-containing granules with cultured rat fibroblasts revealed internalization of radioactivity by the fibroblasts over the first 24 hr consistent with phagocytosis of the granules by these fibroblasts. The [35S]heparin proteoglycan internalized by the fibroblasts was shown to decrease in size over 72 hr indicating that the fibroblasts were capable of degrading the heparin within the ingested granules. Degradation of [35S]heparin proteoglycan within the fibroblast was accompanied by the appearance of free [35S]sulfate in the extracellular compartment. Similar findings were obtained using cultured human fibroblasts. These data demonstrate for the first time that both rat and human fibroblasts are not only capable of ingesting mast cell granules but also of degrading mast cell granule heparin proteoglycan. This ingestion and degradation of mast cell granules by fibroblasts may represent an important mechanism in the regulation of the biologic expression of heparin and other granule-associated mediators in immediate hypersensitivity reactions.  相似文献   

18.
Cultured fibroblasts from patients with I-cell disease (mucolipidosis II) accumulate excessive amounts of free cystine, similarly to cells from patients with nephropathic cystinosis, a disorder of lysosomal cystine transport. To clarify whether the intralysosomal accumulation of cystine in I-cell-disease fibroblasts was due to a defective disposal mechanism, we measured the rates of clearance of free [35S]cystine from intact normal, cystinotic and I-cell-disease fibroblasts. Loss of radioactivity from the two mutant cell types occurred slowly (t 1/2 = 500 min) compared with the rapid loss from normal cells (t 1/2 = 40 min). Lysosome-rich granular fractions isolated from three different cystine-loaded normal, cystinotic and I-cell-disease fibroblast strains were similarly examined for non-radioactive cystine egress. Normal granular fractions lost cystine rapidly (mean t 1/2 = 43 min), whereas cystinotic granular fractions did not lose any cystine (mean t 1/2 = infinity). I-cell-disease granular fractions displayed prolonged half-times for cystine disposal (mean = 108 min), suggesting that I-cell-disease fibroblasts, like cystinotic cells, possess a defective carrier mechanism for cystine transport.  相似文献   

19.
Monolayer cultures of chick embryo tibial chondrocytes incorporate 35SO42- into chondroitin SO4 which is rapidly secreted from the cells into two extracellular pools. Part of the extracellular chondroitin SO4 is recovered in a soluble form in the culture medium, and the remainder is associated with the cell matrix from which it is released by isotonic trypsinization. At 38 degrees C labeled chondroitin SO4 appears in the cell matrix fraction within 5 min after addition of 35SO42- and in the culture medium fraction 15 min after 35SO42- is added. The intracellular pool of labeled chondroitin SO4 reaches a steady state level of 150 to 200 pmol of bound SO4 per 10(6) cells in 60 min, while the cell matrix and medium fractions increase at rates of 3 and 1 nmol of bound SO4 per h per 10(6) cells, respectively. After 4 h of labeling, less than 20% of the newly synthesized cell-associated chondroitin SO4 is in the intracellular fraction. By labeling cells for 15 min at 25 degrees C 80% of the cell-associated chondroitin 35SO4 is obtained in the intracellular fraction. This material is chased without lag into both the cell matrix fraction and the medium fraction. A mixture of NaF and NaCN, both at 30 mM, lowers the cellular ATP level to 15% of normal and blocks secretion of the intracellular chondroitin SO4 into both extracellular fractions. Colchicine at 10(-6) M gives a partial inhibition of both synthesis and secretion of chondroitinSO4. Sucrose density gradient sedimentation analysis of the intracellular chondroitin SO4 and the two extracellular fractions shows that all three fractions contain both a heavy and light proteoglycan fraction. The intracellular light proteoglycan fraction is secreted preferentially into the culture medium where it represents 30% of the total culture medium pool. The ratio of 6-sulfated GalNAc to 4-sulfated GalNAc in the heavy proteochondroitin SO4 fraction is approximately twice that found for the light fraction.  相似文献   

20.
The intracellular localization of exogenously supplied human platelet beta-glucuronidase in cultured skin fibroblasts derived from a beta-glucuronidase-deficient patient was studied. Four cellular fractions were obtained by differential speed centrifugation. Following two days of incubation, the exogenously supplied enzyme exhibited a distribution pattern identical to that of endogenous beta-hexosaminidase. Disruption of membranes by freezing and thawing caused a 35% increase of the enzyme activity, thus indicating a latent activity following the internalization. This indicated localization in the lysosomal fractions. Longer incubation periods led to an intracellular shift of the engulfed enzyme from the lighter lysosomal fraction to heavier particles. Once located in the heavier fraction, the enzyme was relatively stable, and participated in the catabolism of 35S-labeled mucopolysaccharides which had accumulated in the lysosomes of these fibroblasts. A marked reduction in the accumulated mucopolysaccharides of the lysosomal fraction was observed following addition of the enzyme. This was accompanied by the formation of smaller sized molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号