首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Forms of adenylate cyclase, activation and/or potentiation by forskolin   总被引:1,自引:0,他引:1  
Activation of different forms of adenylate cyclases (AC) by forskolin and displacement of [14,15-3H]dihydroforskolin binding from membranes by forskolin in the absence or presence of specific stimulatory hormone and beta, gamma-imidoguanosine 5'-triphosphate (Gpp(NH)p) have been studied. These conditions have been used to generate forskolin dose-response curves of AC activation. A plot of enzyme activation versus apparent forskolin-binding showed a linear and a nonlinear relationship, respectively, in the absence or presence of the other two stimulators. The latter relationship can be fitted by two linear regression lines with a defined intercept, the slopes of which represent two distinct binding-activation (B-A) effects. The B-A effects of forskolin for rat adipocyte and liver membranes in the absence of stimulatory hormone and Gpp(NH)p were 10 and 8 (pmol X min-1) X (pmol)-1, respectively. The B-A effects for the same membranes in the presence of the other two stimulators were 69 (high) and 13 (low) (pmol X min-1) X (pmol)-1 for adipocyte membrane, and 83 (high) and 9 (low) (pmol X min-1) X (pmol)-1 for liver membrane. The ratio of potentiation of forskolin-activated enzyme activity to the unmodified forskolin-stimulated activity (P-A ratio) was determined without the binding data. At 3 microM forskolin, with and without 230 epinephrine and 10 microM Gpp(NH)p, the P-A ratio was 3.7, decreasing to 1.1 with the addition 100 microM forskolin. The line representing a high B-A effect and a resulting high P-A ratio appears to describe the interactions between forskolin and the AC stimulated by epinephrine and Gpp(NH)p. The line of low B-A effect may represent the interaction between forskolin and the basal AC. Two peaks of AC activity were eluted from forskolin-Sepharose column. They have apparent differences in sensitivity to Gpp(NH)p and affinity for forskolin. Based on the results available thus far, with consideration for known limitations of the methodology, a working model has been proposed for forskolin activation of AC.  相似文献   

2.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

3.
4.
The diterpene forskolin stimulated rat cardiac adenylate cyclase activity at least 20-fold and potentiated the effect of NaF. The stimulatory effect of forskolin was reduced in the presence of Gpp(NH)p. Ethanol markedly reduced the stimulation of adenylate cyclase by forskolin while potentiating NaF and Gpp(NH)p stimulation. The inhibitory effect of ethanol on forskolin stimulation appeared to be of a mixed type with both a competitive and a non-competitive component. Three other short-chain linear alcohols (methanol, propanol, butanol) also inhibited forskolin-stimulation, this effect being proportional to the number of carbon atoms.  相似文献   

5.
We have described relationships involving forskolin stimulation of adenylate cyclase (AC) from a variety of sources and the potentiation of forskolin effects by stimulatory hormones (glucagon, ACTH, and epinephrine) and beta, gamma-imidoguanosine 5'-triphosphate (Gpp(NH)p). The effects on AC were examined using membrane preparations of rabbit adipocytes, rat adipocytes, rat erythrocytes, and rat liver. Also examined was the AC of liver membranes of rat pretreated with pertussis toxin as well as that solubilized from rat liver membranes. Maximal forskolin stimulation of AC in all preparations studied revealed a consistent 10-fold increase in AC activity. The EC50 for forskolin was 10 microM for rat liver, 15 microM for rabbit and rat adipocytes and 17 microM for rat erythrocyte AC stimulation. In all cases the AC activity attained by forskolin stimulation was further enhanced by stimulatory hormones in a dose-dependent manner. Furthermore, a combination of all three activators (forskolin, stimulatory hormone, and Gpp(NH)p) resulted in an even greater overall stimulation to levels ranging from 25- to 30-fold over unstimulated activity levels. In the presence of saturating levels of each stimulatory hormone and Gpp(NH)p, the EC50 for forskolin diminished markedly to the range of 0.5 to 4.0 microM. In the absence of any apparent tissue specificity for forskolin stimulation, the general pattern of these results further implicates the catalytic site of the AC complex as the site of forskolin activation. Furthermore, activation of additional components of the complex by Gpp(NH)p and tissue specific hormones may further influence the AC activity and thereby potentiate the stimulation by forskolin.  相似文献   

6.
[3H]Forskolin binds to human platelet membranes in the presence of 5 mM MgCl2 with a Bmax of 125 fmol/mg of protein and a Kd of 20 nM. The Bmax for [3H]forskolin binding is increased to 455 and 425 fmol/mg of protein in the presence of 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and 10 mM NaF, respectively. The increase in the Bmax for [3H]forskolin in the presence of Gpp(NH)p or NaF is not observed in the absence of MgCl2. The EC50 values for the increase in the number of binding sites for [3H]forskolin by Gpp(NH)p and NaF are 600 nM and 4 mM, respectively. The EC50 value for Gpp(NH)p to increase the number of [3H]forskolin binding sites is reduced to 35 mM and 150 nM in the presence of 50 microM PGE1 or PGD2, respectively. The increase in the number of [3H]forskolin binding sites observed in the presence of NaF is unaffected by prostaglandins. The binding of [3H]forskolin to membranes that are preincubated with Gpp(NH)p for 120 min or assayed in the presence of PGE1 reaches equilibrium within 15 min. In contrast, a slow linear increase in [3H]forskolin binding is observed over a period of 60 min when Gpp(NH)p and [3H]forskolin are added simultaneously to membranes. A slow linear increase in adenylate cyclase activity is also observed as a result of preincubating membranes with Gpp(NH)p. In human platelet membranes, agents that activate adenylate cyclase via the guanine nucleotide stimulatory protein (Ns) increase the number of binding sites for [3H]forskolin in a magnesium-dependent manner. This is consistent with the high affinity binding sites for [3H]forskolin being associated with the formation of an activated complex of the Ns protein and adenylate cyclase. This state of the adenylate cyclase may be representative of that formed by a synergistic combination of hormones and forskolin.  相似文献   

7.
The adenylyl cyclase system (ACS) plays a key role in transduction of a hormonal signal into eukaryotic cells. The functional activity of the system depends on SH-groups of proteins involved in the ACS: receptor, G-protein, and enzyme adenylyl cyclase (AC). We studied the influence of thiols and SH-blockers on the regulation of AC activity by nonhormonal (NaF and Gpp[NH]p) and hormonal (biogenic amines isoproterenol and serotonin) agents in homogenates of cultured murine fibroblasts of line L (subline LSM). In the presence of thiols 2-mercaptoethanol (5 mM) and dithiothreitol (1 mM) the basal AC activity somewhat increased, whereas the stimulating effects of NaF, Gpp[NH]p, and hormones decreased. No potentiating action of Gpp[NH]p on hormonal effect in this case was found. The SH-blockers 25 mkM p-chloromercuribenzoic acid (CMBA) and 0.2 mM N-ethylmaleimide significantly inhibited both the basal AC activity and that stimulated by different agents. Thiols partially restored CMBA inhibited AC activity (in the case of N-ethylmaleimide restoring effects of thiols were insignificant). This, the ACS of murine fibroblasts of subline LSM is SH-sensitive. The forms of SH-groups in proteins involved in the ACS determine their functional activities and a possibility of transduction of the hormonal signal on the effector systems.  相似文献   

8.
Ethanol''s Effects on Cortical Adenylate Cyclase Activity   总被引:7,自引:4,他引:3  
The effects of ethanol on beta-adrenergic receptor-coupled adenylate cyclase (AC) of mouse cerebral cortex were examined. The addition of ethanol (20-500 mM) to incubation mixtures containing cortical membranes demonstrated that ethanol could increase AC activity and potentiate the stimulatory effects of guanylyl-imidodiphosphate [Gpp(NH)p] on AC activity. Ethanol increased the rate of activation of AC by guanine nucleotides and concomitantly decreased the EC50 for magnesium required to achieve maximal stimulation of cortical AC. The EC50 values for Gpp(NH)p and isoproterenol stimulation of AC activity were also altered by ethanol. Ethanol was capable of stimulating AC extracted by use of digitonin. The AC activity in the digitonin extract was no longer sensitive to the addition of Gpp(NH)p or NaF, but was still stimulated by ethanol. We propose multiple sites of action for ethanol in stimulating cortical AC activity. These sites include actions at the beta-adrenergic receptor, at the G/F coupling proteins, and at the catalytic unit of cortical AC. Comparison of ethanol's actions on cortical beta receptor coupled AC activity with prior reported actions of ethanol on striatal dopamine (DA)-sensitive AC indicated differential sensitivities of these two AC systems to ethanol. These differences may be determined by specific coupling characteristics of the striatal and cortical AC systems or by differences in the plasma membranes in which striatal and cortical AC systems are located.  相似文献   

9.
Forskolin activated adenylate cyclase of purified rat adipocyte membranes in the absence of exogenous guanine nucleotides. Guanyl-5'-yl imidodiphosphate (Gpp(NH)p) inhibited the forskolin-activated cyclase immediately upon addition of the nucleotide at concentrations too low to activate adenylate cyclase (10(-9) to 10(-7) M). Inhibition seen with a very high concentration of Gpp(NH)p (10(-4) M) lasted for 3-4 min and was followed by an increase in the synthetic rate which remained constant for at least 15 min. The length of the transient inhibition did not vary with forskolin concentrations above 0.05 microM but low Gpp(NH)p (10(-8) M) exhibited a lengthened (6-7 min) inhibitory phase. The transient inhibitory effects of Gpp(NH)p were eliminated by 10(-7) M isoproterenol, high (40 mM) Mg2+, or preincubation with Gpp(NH)p in the absence of forskolin. While forskolin stimulated fat cell cyclase in the presence of Mn2+, this ion blocked the inhibitory effects of Gpp(NH)p. The well documented inhibitory effects of GTP on the fat cell adenylate cyclase system were also observed in the presence of forskolin. However, the inhibition by GTP is not transitory. These findings indicate that Gpp(NH)p regulation of forskolin-stimulated cyclase has at least two components: 1) an inhibitory component which acts through an undetermined mechanism and which acts immediately to decrease cyclase activity; and 2) an activating component which modulates the inhibited cyclase activity through the guanine nucleotide regulatory protein.  相似文献   

10.
The activation of bovine thyroid adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) by Gpp(NH)p has been studied using steady-state kinetic methods. This activation is complex and may be characterized by two Gpp(NH)p binding sites of different affinities with measured constants: Ka1 = 0.1 micro M and Ka2 = 2.9 micro M. GDP beta S does not completely inhibit the Gpp(NH)p activation: analysis of the data is consistent with a single GDP beta S inhibitory site which is competitive with the weaker Gpp(NH)p site. Guanine nucleotide effects upon F- activation of adenylate cyclase have been studied. When App(NH)p is the substrate, 10 micro M GTP along with 10 mM NaF gives higher activity than NaF alone, while GDP together with NaF inhibits the activity by 50% relative to NaF. These features are not observed when the complex is assayed with ATP in the presence of a nucleotide regenerating system or when analogs Gpp)NH)p or GDP beta S are used along with NaF. These effects were studied in three other membrane systems using App(NH)p as substrate: rat liver, rat ovary and turkey erythrocyte. No consistent pattern of guanine nucleotide effects upon fluoride activation could be observed in the different membrane preparations. Previous experiments showed that the size of soluble thyroid adenylate cyclase changed whether membranes were preincubated with Gpp(NH)p or NaF. This size change roughly corresponded to the molecular weight of the nucleotide regulatory protein. This finding, coupled with the present data, suggests that two guanine nucleotide binding sites may be involved in regulating thyroid cyclase and that these sites may be on different protein chains.  相似文献   

11.
Effects of Lead on Adenylate Cyclase Activity in Rat Cerebral Cortex   总被引:1,自引:0,他引:1  
Lead decreased in a dose dependent manner the basal AC activity in membranes of rat cerebral cortex (IC50 = 2.5 ± 0.1 M). In membranes preincubated under basal conditions, AC activity was stimulated by approximately two and fourfold by 10 M Gpp(NH)p or forskolin, respectively. Under basal conditions, lead (3 M) inhibited enzyme activity up to 50%, but was not able to inhibit the Gpp(NH)p- or the forskolin-stimulated AC activity. However, in membranes preincubated with Gpp(NH)p (10 M), lead (3 M) had no significant effect on enzyme activity, but it partly blocked the stimulation of AC activity elicited by forskolin (10 M). In membranes preincubated with 10 M lead, the addition of 10 M Gpp(NH)p or forskolin in the incubation medium did not stimulate AC activity. However, when added together in the incubation medium Gpp(NH)p + forskolin produced an increase in enzyme activity. In membranes preincubated with 10 M lead + 10 M Gpp(NH)p, Gpp(NH)p (10 M) or forskolin (10 M) added alone or in combination to the incubation medium did not stimulate AC activity. Moreover, under these latter conditions lead had no further effect on enzyme activity. These results indicate that lead may interact with G-proteins and with the catalytic subunit of cerebral cortical AC to produce inhibition of the enzyme activity.  相似文献   

12.
We have compared the effects of Gpp[NH]p on adenylate cyclase activity of platelet membranes in SHR and WKY rats. In the presence of 50 microM forskolin, low concentrations of Gpp[NH]p (0.01 to 0.3 microM) inhibited the enzyme activity in both strains, but the maximal level of inhibition was significantly lower in SHR (- 20%). In the absence of forskolin, 0.1 microM Gpp[NH]p was inhibitory only in WKY and the adenylate cyclase activity was greater in hypertensive rats at this nucleotide concentration. Increasing Gpp[NH]p from 0.1 to 3 microM induced the same increase of enzyme activity in both strains. In SHR, GTP itself induced a lower inhibition of the enzyme stimulated by 50 microM forskolin or 0.1 microM prostaglandin E1. These results suggest that the modulatory effect of the guanine nucleotide inhibitory protein on adenylate cyclase may be reduced in platelets from SHR.  相似文献   

13.
The effect of preincubation of preparations of the outer segments of optic rods with the nonhydrolyzed analog GTP-guanilyl-5'-imidodiphosphate (Gpp(NH)p) and NaF, the combined effect of these agents as well as the action of (NH4)2SO4 (10-800 mM), MgSO4 (2-50 mM) and induction of peroxide oxidation of lipids are studied as applied to the catalytic activity of phosphodiesterase of cyclic nucleotides. Gpp(NH)p and NaF are shown to be tightly bound to GTP-binding proteins (G-proteins) of outer segments of optic rods, additional activation of phosphodiesterase in the presence of Gpp(NH)p being observed after preincubation with NaF and subsequent washing of the membrane. A problem on different binding sites of the ion F and Gpp(NH)p on G-proteins is discussed. It is found that (NH4)2SO4 does not affect the basal activity of phosphodiesterase but inhibits the activating effect of Gpp(NH)p and NaF on the enzyme. Induction of peroxide oxidation of lipids prevented by the addition of ionol (antioxidant) in a dose of 5.10(-4) M has the same effect. Changes in the concentration of Mg2+ in the medium influence insignificantly the basal activity of phosphodiesterase but are necessary for manifestation of the activating effect of Gpp(NH)p and NaF.  相似文献   

14.
The properties of the adenylate cyclase from forskolin-resistant mutants of Y1 adrenocortical tumor cells was compared with the properties of the enzyme from parental Y1 cells in order to localize the site of mutation. In parental Y1 cells, forskolin stimulated adenylate cyclase activity with kinetics suggestive of an interaction at two sites; in mutant cells, forskolin resistance was characterized by a decrease in enzymatic activity at both sites. Forskolin potentiated the enzyme's responses to NaF and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) in parent and mutant clones, and the mutant enzyme showed the same requirements for Mg2+ and Mn2+ as did the parent enzyme. The adenylate cyclase associated with forskolin-resistant mutants was insensitive to ACTH and was less responsive to Gpp(NH)p than was the parent enzyme. In parental Y1 cells and in the forskolin-resistant mutants, cholera toxin catalyzed the transfer of [32P]ADP-ribose from [32P]NAD+ into three membrane proteins associated with the alpha subunit of Gs; however, the amount of labeled ADP-ribose incorporated into mutant membranes was reduced by as much as 70%. Both parent and mutant membranes were labeled by pertussis toxin to the same extent. The insensitivity of the mutant adenylate cyclase to ACTH and Gpp(NH)p and the selective resistance of the mutant membranes to cholera toxin-catalyzed ADP-ribosylation suggest that a specific defect associated with Gs is involved in the mutation to forskolin resistance in Y1 cells.  相似文献   

15.
We report here that forskolin acts in a synergistic manner with dopaminergic agonists, guanine nucleotides, or sodium fluoride to potentiate the stimulation of rat striatal adenylate cyclase mediated by these reagents. In the presence of 100 microM GTP, 100 microM guanyl-5'-yl imidodiphosphate [Gpp(NH)p], or 10 mM NaF, there is a greater than additive increase in forskolin-stimulated enzyme activity as well as a concomitant decrease (two- to fourfold) in the EC50 value for forskolin stimulation of striatal enzyme activity. In the presence of various concentrations of forskolin (10 nM-100 microM), the stimulation of adenylate cyclase elicited by GTP, Gpp(NH)p, and NaF is potentiated 194-1,825%, 122-1,141%, and 208-938%, respectively, compared with the stimulation by these agents above basal activity in the absence of forskolin. With respect to 3,4-dihydroxyphenylethylamine (dopamine) receptor-mediated stimulation of striatal enzyme activity, the stimulation of enzyme activity by dopaminergic agonists, in the absence or presence of forskolin, was GTP-dependent and could be antagonized by the selective D-1 antagonist SCH23390 (100 nM), indicating that these effects are mediated by D-1 dopamine receptors. In the presence of 100 microM GTP, forskolin at various concentrations markedly potentiates the stimulation elicited by submaximal as well as a maximally effective concentrations of dopamine (100 microM) and SKF38393 (1 microM). At higher concentrations of forskolin (10-100 microM) the stimulation elicited by the partial agonist SKF38393 is comparable to that of the full agonist dopamine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The coupling of hormone-activated receptor and heterotrimeric G protein is an important step of the signal transduction through adenylyl cyclase signal system (ACS). The numerous literature data and own results show that G protein-interacting regions, that are localized in cytoplasmic loops of receptors, have considerable positive charge, can form amphiphilic alpha-helices and are tightly associated with the membrane. We studied the influence of model cationic peptides on both basal and stimulated by hormones and nonhormonal agents adenylyl cyclase (AC) activity and on GTP binding activity of heterotrimeric G proteins in skeletal muscles of rats and smooth muscles of mollusc Anodonta cygnea. Peptides with hydrophobic radicals of caprinoyl acid (C10): Lys(C10)-His-Glu-Lys-Lys-(C10)-His-Glu-Lys-Lys(C10)-His-Glu-Lys-Lys(C10)- His-Glu-Lys-Ala-amide (peptide I), Cys-Lys(C10)-X-Tyr-Lys-Ala-Lys7-Trp-Lys-amide (II), Cys-X-Trp-Lys-Lys(C10)-Lys2-Lys(C10)-Lys3-Lys(C10)-Tyr-Lys-Lys(C10)-Lys-Lys- amide (III), where X--epsilon-aminocaproyl acid residue, were synthesized by solid-phase methodology. IC50 values for inhibiting the influence of peptides on serotonin-(molluscs) and isoproterenol-stimulated (rats) AC activity were: for peptide I--56 and 70 mkM, for peptide II--32 and 47 mkM, for peptide III--22 and 28 mkM, respectively. At the same time the peptides weakly decreased AC activity stimulated by nonhormonal agents (NaF, Gpp[NH]p, forskolin). Peptides I--III stimulated basal activity of the enzyme in both investigated tissues. The maximum stimulating effects (28--52%) of the peptides were observed at their concentration 10 mkM. Peptides (10--100 mkM) increased Gpp[NH]p binding in plasma membranes of mollusc and rat muscles and strongly decreased the influence of the hormones on the binding. Based on the obtained data we supposed that cationic peptides with hydrophobic radicals mimic G protein-binding regions of the receptors and can be involved in the regulation of functional coupling between the receptors and G proteins.  相似文献   

17.
The mechanism of action of forskolin stimulation of adenylate cyclase was investigated by examining its effects on the enzyme's Mg2+ activated catalytic unit (C) from bovine sperm, both preceding and following complementation with human erythrocyte membranes as a source of guanine nucleotide regulatory protein (N). Prior to complementation, sperm C was not activated by either NaF (10 mM) or 5'-guanylyl-beta-gamma-imidodiphosphate (Gpp(NH)p, 10 microM), suggesting that functional N was not present in this preparation. Forskolin (100 microM) was also without effect on C. Following complementation of the sperm membranes with those of erythrocytes, Mg2+-dependent sensitivity to forskolin, NaF, and Gpp(NH)p was imparted to C. Our findings are incompatible with the current hypothesis that forskolin stimulates adenylate cyclase by direct activation of C. Rather, the data suggest that the activation process occurs through an effect on N or by augmentation of the interaction between the components of the adenylate cyclase complex.  相似文献   

18.
Gpp[NH]p, forskolin, and NaF were found to activate the activity of adenylate cyclase in vitro in the membrane fraction of the striatum. Gangliosides decreased the level of basal activity of the striatal adenylate cyclase. Gangliosides were shown to modulate the activity of the enzyme through changes in its catalytic properties.  相似文献   

19.
Desensitization of catecholamine stimulated adenylate cyclase (AC) activity is demonstrated in membranes derived from turkey erythrocytes pre-treated with isoproterenol. Membranes from desensitized cells had a loss in maximal catecholamine stimulated adenylate cyclase activity of 104 +/- 13 (pmols/mg protein/10', p less than .001) compared with controls. When adenylate cyclase was maximally stimulated with NaF or Gpp(NH)p, the decrements were 84 +/- 19 (p less than .005) and 92 +/- 32 (p less than .05) pmol/mg protein/10' respectively. There was no change in beta-adrenergic receptor number in membranes derived from treated cells. While the molecular mechanism accounting for the desensitization is uncertain, the data is consistent with the hypothesis that there is a lesion distal to the beta-adrenergic receptor, possibly involving the nucleotide site or the catalytic subunit of adenylate cyclase, causing the desensitization in the isoproterenol treated cells.  相似文献   

20.
It has been shown that in smooth muscles of the freshwater bivalve molluscAnodonta cygnea as well as in skeletal muscles and brain striatum of rats a blocker of SH-groups,para-chlormercury benzoate (ChMB), and an alkylating agent,N-ethylmaleimide, inhibit both the basal adenylyl cyclase (AC) activity and the activity of the enzyme stimulated by non-hormonal agents (NaF, Gpp[NH]p) and by hormonal agents such as serotonin (mollusc muscles, rat brain) or isoproterenol (rat muscles and rat brain). The inhibitory effects of ChMB andN-ethylmaleimide on AC are partly eliminated by an SH-group containing reagent, β-mercaptoethanol (ME, 5 mM). Restoration of the basal and of the stimulated enzyme activity inhibited by ME is better in the case of the ChMB than of theN-ethylmaleimide action. It has also been found that ME stimulates both the basal and the stimulated by non-hormonal agents AC activity. In the presence of ME the hormonal stimulating effects on the enzyme are also preserved, except for the effect of isoproterenol on AC in rat skeletal muscles; this effect is inhibited by ME. Potentiation of the stimulating effect of the hormones on AC by Gpp[NH]p is only preserved in the molluscan smooth muscles (the effect of serotonin—90%). The data obtained indicate that cysteine sulfhydryl groups play a key role in hormonal regulation of the functional activity of the components of the hormone-sensitive adenylyl cyclase signaling system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号