首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
《Free radical research》2013,47(5):656-664
Abstract

The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (EGSSG/2 GSH) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (ECySS/2 Cys). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a ‘thiol–disulphide redox environment’ (Ethiol–disulphide), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of ECySS/2 Cys to Ethiol–disulphide in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.  相似文献   

2.
Glutathione (GSH), a major antioxidant in most aerobic organisms, is perceived to be particularly important in plant chloroplasts because it helps to protect the photosynthetic apparatus from oxidative damage. In transgenic tobacco plants overexpressing a chloroplast-targeted gamma-glutamylcysteine synthetase (gamma-ECS), foliar levels of GSH were raised threefold. Paradoxically, increased GSH biosynthetic capacity in the chloroplast resulted in greatly enhanced oxidative stress, which was manifested as light intensity-dependent chlorosis or necrosis. This phenotype was associated with foliar pools of both GSH and gamma-glutamylcysteine (the immediate precursor to GSH) being in a more oxidized state. Further manipulations of both the content and redox state of the foliar thiol pools were achieved using hybrid transgenic plants with enhanced glutathione synthetase or glutathione reductase activity in addition to elevated levels of gamma-ECS. Given the results of these experiments, we suggest that gamma-ECS-transformed plants suffered continuous oxidative damage caused by a failure of the redox-sensing process in the chloroplast.  相似文献   

3.
The lesions simulating disease (lsd) mutants of Arabidopsis spontaneously develop hypersensitive-response-like lesions in the absence of pathogens. To address the function of the redox regulator glutathione in disease resistance, we examined the relationship between endogenous glutathione and PR-1 accumulation using one of these mutants, lsd1, as a disease resistance model. Lesion formation on lsd1 was suppressed by weak light and initiated by the subsequent transition to normal light. The application of buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis, suppressed conditionally induced runaway cell death and expression of the PR-1 gene, suggesting that glutathione regulates the conditional cell death and PR-1 gene expression. The application of reduced (GSH) or oxidized (GSSG) glutathione to lsd1 upregulated the level of total glutathione ([GSH]+[GSSG]) accompanied by hastened accumulation of PR-1, and the basal level of total glutathione in lsd1 was higher than that in wild-type plants. The glutathione redox state defined as [GSH]/([GSH]+[GSSG]) decreased following the conditional transition, but the suppression of this decrease by the application of GSH did not inhibit the accumulation of PR-1. Taken together, conditional PR-1 accumulation in lsd1 is regulated not by the redox state but by the endogenous level of glutathione.  相似文献   

4.
5.
Many proteins, including actin, are targets for S-glutathionylation, the reversible formation of mixed disulphides between protein cysteinyl thiol groups and glutathione (GSH) that can be induced in cells by oxidative stress. Proposed mechanisms of protein S-glutathionylation follow mainly two distinct pathways. One route involves the initial oxidative modification of a reduced protein thiol to an activated protein, which may then react with GSH to the mixed disulphide. The second route involves the oxidative modification of GSH to an activated form such as glutathione disulphide (GSSG), which may then react with a reduced protein thiol, yielding the corresponding protein mixed disulphide. We show here that physiological levels of GSSG induce a little extent of actin S-glutathionylation. Instead, actin with the exposed cysteine thiol activated by diamide or 5,5'-dithiobis(2-nitrobenzoic acid) reacts with physiological levels of GSH, incorporating about 0.7 mol GSH/mol protein. Differently, an extremely high concentration of GSSG induces an increased level of S-glutathionylation that causes a 50% inhibition in actin polymerization not reversed by dithiotreitol. In mammalian cells, GSH is present in millimolar concentrations and is in about 100-fold excess over GSSG. The high concentration of GSSG required for obtaining a significant actin S-glutathionylation as well as attendant irreversible changes in protein functions make unlikely that actin may be S-glutathionylated by a thiol-disulphide exchange mechanism within the cell.  相似文献   

6.
The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (E(GSSG/2 GSH)) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (E(CySS/2 Cys)). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a 'thiol-disulphide redox environment' (E(thiol-disulphide)), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of E(CySS/2 Cys) to E(thiol-disulphide) in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.  相似文献   

7.
Although inhibition of glutathione reductase (GR) has been demonstrated to cause a decrease in reduced glutathione (GSH) and increase in glutathione disulfide (GSSG), a systematic study of the effects of GR inhibition on thiol redox state and related systems has not been noted. By employing a monkey kidney cell line as the cell model and 2-acetylamino-3-[4-(2-acetylamino-2-carboxy-ethylsulfanylthio carbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) as a GR inhibitor, an investigation of the effects of GR inhibition on cellular thiol redox state and related systems was conducted. Our study demonstrated that, in addition to a decrease in GSH and increase in GSSG, 2-AAPA increased the ratios of NADH/NAD+ and NADPH/NADP+. Significant protein glutathionylation was observed. However, the inhibition did not affect the formation of reactive oxygen species or expression of antioxidant defense enzyme systems [GR, glutathione peroxidase, catalase, and superoxide dismutase] and enzymes involved in GSH biosynthesis [γ-glutamylcysteine synthetase and glutathione synthetase].  相似文献   

8.
Mitochondrial membrane potential (DeltaPsi(m)) depolarization contributes to cell death and electrical and contractile dysfunction in the post-ischemic heart. An imbalance between mitochondrial reactive oxygen species production and scavenging was previously implicated in the activation of an inner membrane anion channel (IMAC), distinct from the permeability transition pore (PTP), as the first response to metabolic stress in cardiomyocytes. The glutathione redox couple, GSH/GSSG, oscillated in parallel with DeltaPsi(m) and the NADH/NAD(+) redox state. Here we show that depletion of reduced glutathione is an alternative trigger of synchronized mitochondrial oscillation in cardiomyocytes and that intermediate GSH/GSSG ratios cause reversible DeltaPsi(m) depolarization, although irreversible PTP activation is induced by extensive thiol oxidation. Mitochondrial dysfunction in response to diamide occurred in stages, progressing from oscillations in DeltaPsi(m) to sustained depolarization, in association with depletion of GSH. Mitochondrial oscillations were abrogated by 4'-chlorodiazepam, an IMAC inhibitor, whereas cyclosporin A was ineffective. In saponin-permeabilized cardiomyocytes, the thiol redox status was systematically clamped at GSH/GSSG ratios ranging from 300:1 to 20:1. At ratios of 150:1-100:1, DeltaPsi(m) depolarized reversibly, and a matrix-localized fluorescent marker was retained; however, decreasing the GSH/GSSG to 50:1 irreversibly depolarized DeltaPsi(m) and induced maximal rates of reactive oxygen species production, NAD(P)H oxidation, and loss of matrix constituents. Mitochondrial GSH sensitivity was altered by inhibiting either GSH uptake, the NADPH-dependent glutathione reductase, or the NADH/NADPH transhydrogenase, indicating that matrix GSH regeneration or replenishment was crucial. The results indicate that GSH/GSSG redox status governs the sequential opening of mitochondrial ion channels (IMAC before PTP) triggered by thiol oxidation in cardiomyocytes.  相似文献   

9.
In the present study, the effect of thiol redox and its possible role in the inhibitory effect of nicotinamide on renal brush-border membrane (BBM) phosphate uptake was examined. Addition of thiol reducing agent, dithiothreitol (DTT, 5 mM), caused an increase, while addition of thiol oxidant, diamide (DM, 5 mM) caused a reversible decrease in sodium-dependent BBM phosphate uptake. Kinetic analyses revealed an increase in both Vmax and Km by DTT, and a decrease in Vmax by DM. These results suggest that thiol redox influences BBM phosphate uptake with sulfhydryl (SH) groups relate to its capacity and disulfide (SS) groups to its affinity for phosphate. Since changes in cytosolic NAD levels may affect BBM thiol redox through changes in redox states of NADP and glutathione systems, we have examined such possibility by studying the effect of nicotinamide (NM). Incubation of proximal tubules with NM (10 mM) induced an oxidative effect on redox states of cytosolic NAD, NADP systems as inferred from decreased cellular lactate/pyruvate, malate/pyruvate, respectively. Measurements of cytosolic glutathiones and BBM thiols also revealed that NM pretreatment shifted the cytosolic glutathione redox (GSH/GSSG) and BBM thiol redox (SH/SS) toward more oxidized state. On the other hand, incubation of proximal tubules with NM suppressed phosphate uptake by the subsequently isolated BBM vesicles. The lower phosphate uptake by NM-pretreated BBM vesicles was reversed by DTT and was resistant to the inhibitory effect of DM. These results thus suggest that BBM thiol oxidation may be involved in the inhibitory effect of NM on BBM phosphate uptake.  相似文献   

10.
Glutathione (γ-glutamylcysteinylglycine, GSH and oxidized glutathione, GSSG), may function as a neuromodulator at the glutamate receptors and as a neurotransmitter at its own receptors. We studied now the effects of GSH, GSSG, glutathione derivatives and thiol redox agents on the spontaneous, K+- and glutamate-agonist-evoked releases of [3H]dopamine from mouse striatal slices. The release evoked by 25 mM K+ was inhibited by GSH, S-ethyl-, -propyl-, -butyl- and pentylglutathione and glutathione sulfonate. 5,5′-Dithio-bis-2-nitrobenzoate (DTNB) and l-cystine were also inhibitory, while dithiothreitol (DTT) and l-cysteine enhanced the K+-evoked release. Ten min preperfusion with 50 μM ZnCl2 enhanced the basal unstimulated release but prevented the activation of K+-evoked release by DTT. Kainate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) evoked dopamine release but the other glutamate receptor agonists N-methyl-d-aspartate (NMDA), glycine (1 mM) and trans-1-aminocyclopentane-1,3-dicarboxylate (t-ACPD, 0.5 mM), and the modulators GSH, GSSG, glutathione sulfonate, S-alkyl-derivatives of glutathione, DTNB, cystine, cysteine and DTT (all 1 mM) were without effect. The release evoked by 1 mM glutamate was enhanced by 1 mM GSH, while GSSG, glutathionesulfonate and S-alkyl derivatives of glutathione were generally without effect or inhibitory. NMDA (1 mM) evoked release only in the presence of 1 mM GSH but not with GSSG, other peptides or thiol modulators. l-Cysteine (1 mM) enhanced the glutamate-evoked release similarly to GSH. The activation by 1 mM kainate was inhibited by S-ethyl-, -propyl-, and -butylglutathione and the activation by 0.5 mM AMPA was inhibited by S-ethylglutathione but enhanced by GSSG. Glutathione alone does not directly evoke dopamine release but may inhibit the depolarization-evoked release by preventing the toxic effects of high glutamate, and by modulating the cysteine–cystine redox state in Ca2+ channels. GSH also seems to enhance the glutamate-agonist-evoked release via both non-NMDA and NMDA receptors. In this action, the γ-glutamyl and cysteinyl moieties of glutathione are involved.  相似文献   

11.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

12.
In most cells, the major intracellular redox buffer is glutathione (GSH) and its disulfide-oxidized (GSSG) form. The GSH/GSSG system maintains the intracellular redox balance and the essential thiol status of proteins by thiol disulfide exchange. Topoisomerases are thiol proteins and are a target of thiol-reactive substances. In this study, the inhibitory effect of physiological concentration of GSH and GSSG on topoisomerase IIα activity in vitro was investigated. GSH (0-10 mM) inhibited topoisomerase IIα in a concentration-dependent manner while GSSG (1-100 μM) had no significant effect. These findings suggest that the GSH/GSSG system could have a potential in vivo role in regulating topoisomerase IIα activity.  相似文献   

13.
The effects of dithiothreitol (DTT) and, reduced (GSH) and oxidized (GSSG), glutathione on the release of [3H]GABA evoked by glutamate and its agonists were studied in rat hippocampal slices. DTT had no effect on the basal release of [3H]GABA but it enhanced and prolonged the glutamate agonist-evoked release. This effect was abolished by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK-801), a noncompetitive NMDA antagonist, and blocked by Mg2+ ions. It was only slightly attenuated by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, and not affected by -(+)-2-amino-3-phosphonopropionate ( -AP3), a selective antagonist of the metabotropic glutamate receptor. The effect of DTT on the NMDA-evoked release of GABA was only slightly affected by extracellular Ca2+ but completely blocked by verapamil even in the absence of Ca2+. GSH and GSSG attenuated or abolished the effects of DTT on the agonist-induced release of [3H]GABA. The results imply that the enhanced and prolonged release of GABA evoked by the coexistence of DTT and excitatory amino acids and attenuated by endogenous GSH and GSSG is a consequence of sustained activation of the NMDA receptor-governed ionophores, which contain functional thiol groups. DTT, GSH and GSSG may regulate the redox state and accessibility of these groups. In addition to the influx of extracellular Ca2+, DTT mobilizes Ca2+ from intracellular pools distinct from those regulated by metabotropic glutamate receptors.  相似文献   

14.
Reduced glutathione (GSH) is the most abundant low-molecular weight thiol in plant cells. It accumulates to high concentrations, particularly in stress situations. Because the pathway of GSH synthesis consists of only two enzymes, manipulation of cellular glutathione contents by genetic intervention has proved to be relatively straightforward. The discovery of a new bacterial bifunctional enzyme catalysing GSH synthesis but lacking feedback inhibition characteristics offers new prospects of enhancing GSH production and accumulation by plant cells, while the identification of γ-glutamyl cysteine and glutathione transporters provides additional possibilities for selective compartment-specific targeting. Such manipulations might also be used to affect plant biology in disparate ways, because GSH and glutathione disulphide (GSSG) have crucial roles in processes as diverse as the regulation of the cell cycle, systemic acquired resistance and xenobiotic detoxification. For example, depletion of the total glutathione pool can be used to manipulate the shoot : root ratio, because GSH is required specifically for the growth of the root meristem. Similarly, chloroplast γ-glutamyl cysteine synthetase overexpression could be used to increase the abundance of specific amino acids such as leucine, lysine and tyrosine that are synthesized in the chloroplasts. Here we review the aspects of glutathione biology related to synthesis, compartmentation and transport and related signalling functions that modulate plant growth and development and underpin any assessment of manipulation of GSH homeostasis from the viewpoint of nutritional genomics.  相似文献   

15.
One biochemical response to increased H2O2 availability is the accumulation of glutathione disulphide (GSSG), the disulphide form of the key redox buffer glutathione. It remains unclear how this potentially important oxidative stress response impacts on the different sub‐cellular glutathione pools. We addressed this question by using two independent in situ glutathione labelling techniques in Arabidopsis wild type (Col‐0) and the GSSG‐accumulating cat2 mutant. A comparison of in situ labelling with monochlorobimane (MCB) and in vitro labelling with monobromobimane (MBB) revealed that, whereas in situ labelling of Col‐0 leaf glutathione was complete within 2 h incubation, about 50% of leaf glutathione remained inaccessible to MCB in cat2. High‐performance liquid chromatography (HPLC) and enzymatic assays showed that this correlated tightly with the glutathione redox state, pointing to significant in vivo pools of GSSG in cat2 that were unavailable for MCB labelling. Immunogold labelling of leaf sections to estimate sub‐cellular glutathione distribution showed that the accumulated GSSG in cat2 was associated with only a minor increase in cytosolic glutathione but with a 3‐ and 10‐fold increase in plastid and vacuolar pools, respectively. The data are used to estimate compartment‐specific glutathione concentrations under optimal and oxidative stress conditions, and the implications for redox homeostasis and signalling are discussed.  相似文献   

16.
Dipyridyl disulfide (DPS) is a highly reactive thiol oxidant that functions as electron acceptor in thiol-disulfide exchange reactions. DPS is very toxic to yeasts, impairing growth at low micromolar concentrations. The genes TRX2 (thioredoxin), SOD1 (superoxide dismutase), GSH1 (gamma-glutamyl-cysteine synthetase) and, particularly, GLR1 (glutathione reductase) are required for survival on DPS. DPS is uniquely thiol-specific, and we found that the cellular mechanisms for DPS detoxification differ substantially from that of the commonly used thiol oxidant diamide. In contrast to this oxidant, the full antioxidant pools of glutathione (GSH) and thioredoxin are required for resistance to DPS. We found that DPS-sensitive mutants display increases in the disulfide form of GSH (GSSG) during DPS exposure that roughly correlate with their more oxidizing GSH redox potential in the cytosol and their degree of DPS sensitivity. DPS seems to induce a specific disulfide stress, where an increase in the cytoplasmic/nuclear GSSG/GSH ratio results in putative DPS target(s) becoming sensitive to DPS.  相似文献   

17.
Glutathione (GSH) plays several roles in cell metabolism such as redox state regulation, oxidative stress control, and protection against xenobiotics and heavy metals. GSH is synthesized in two steps catalysed by gamma-glutamylcysteine synthetase (gamma-ECS) and glutathione synthetase. gamma-ECS is feedback inhibited by GSH, which has led to the proposal that this enzyme acts as the rate-limiting step in the pathway. Thus far, the study of GSH metabolism has been confined to GSH synthesis (GSH supply), without considering the GSH-consuming enzymes (GSH demand). Several works have shown that the demand block of enzymes may have a significant control on a pathway; therefore, we hypothesize that GSH-consuming enzymes may exert some control on GSH synthesis. A kinetic model of GSH and phytochelatin synthesis in plants was constructed using the software GEPASI and the kinetic data available in the literature. The main conclusions drawn by the model concerning metabolic control analysis are (1) gamma-ECS is indeed a rate-limiting step in GSH synthesis, but only if GSH-consuming enzymes are not taken into account. (2) At low demand, GSH-consuming enzymes exert significant flux-control on GSH synthesis whereas at high demand, supply and demand blocks share the control of flux. (3) In unstressed conditions, flux to GSH is controlled mainly by demand, so that gamma-ECS determines the degree of homeostasis of the GSH concentration. Under cadmium exposure, the GSH demand increases and flux-control is re-distributed almost equally between the supply and demand blocks. (4) To enhance phytochelatins synthesis without depleting the GSH pool, at least two enzymes (gamma-ECS and PCS) should be increased and/or, alternatively, a branching flux (GSH-S-transferases) could be partially diminished.  相似文献   

18.
Glutathione (γ-glutamylcysteinyl-glycine, GSH) has vital functions as thiol redox buffer and cofactor of antioxidant and detoxification enzymes. Plasmodium falciparum possesses a functional GSH biosynthesis pathway and contains mM concentrations of the tripeptide. It was impossible to delete in P. falciparum the genes encoding γ-glutamylcysteine synthetase (γGCS) or glutathione synthetase (GS), the two enzymes synthesizing GSH, although both gene loci were not refractory to recombination. Our data show that the parasites cannot compensate for the loss of GSH biosynthesis via GSH uptake. This suggests an important if not essential function of GSH biosynthesis pathway for the parasites. Treatment with the irreversible inhibitor of γGCS L-buthionine sulfoximine (BSO) reduced intracellular GSH levels in P. falciparum and was lethal for their intra-erythrocytic development, corroborating the suggestion that GSH biosynthesis is important for parasite survival. Episomal expression of γgcs in P. falciparum increased tolerance to BSO attributable to increased levels of γGCS. Concomitantly expression of glutathione reductase was reduced leading to an increased GSH efflux. Together these data indicate that GSH levels are tightly regulated by a functional GSH biosynthesis and the reduction of GSSG.  相似文献   

19.
Glutathione (GSH) and GSH-dependent enzymes play a key role in cellular detoxification processes that enable organism to cope with various internal and environmental stressors. However, it is often not clear, which components of the complex GSH-metabolism are required for tolerance towards a certain stressor. To address this question, a small scale RNAi-screen was carried out in Caenorhabditis elegans where GSH-related genes were systematically knocked down and worms were subsequently analysed for their survival rate under sub-lethal concentrations of arsenite and the redox cycler juglone. While the knockdown of γ-glutamylcysteine synthetase led to a diminished survival rate under arsenite stress conditions, GSR-1 (glutathione reductase) was shown to be essential for survival under juglone stress conditions. gsr-1 is the sole GSR encoding gene found in C. elegans. Knockdown of GSR-1 hardly affected total glutathione levels nor reduced glutathione/glutathione disulphide (GSH/GSSG) ratio under normal laboratory conditions. Nevertheless, when GSSG recycling was impaired by gsr-1(RNAi), GSH synthesis was induced, but not vice versa. Moreover, the impact of GSSG recycling was potentiated under oxidative stress conditions, explaining the enormous effect gsr-1(RNAi) knockdown had on juglone tolerance. Accordingly, overexpression of GSR-1 was capable of increasing stress tolerance. Furthermore, expression levels of SKN-1-regulated GSR-1 also affected life span of C. elegans, emphasising the crucial role the GSH redox state plays in both processes.  相似文献   

20.
The role in the activation of microsomal 5'-deiodinase (5'-DI) of rat hepatic cytosolic components of Mr approx. 13,000 (Fraction B) was studied in the presence of various concentrations of thiol compounds such as dithiothreitol (DTT), dihydrolipoamide (DHLA), GSH, and 2-mercaptoethanol (2-ME). Although Fraction B (which was prepared by gel filtration to exclude GSH and GSSG) had no intrinsic 5'-DI activity, could not stimulate microsomal 5'-DI activity in the absence of added thiol and did not contain GSH as a mixed disulphide, it could produce a 3-fold increase in the maximal deiodinase activity achievable with DTT as well as other thiols, with the order being the same as the activation potency of these thiols in the absence of Fraction B (i.e. DHLA greater than DTT greater than 2-ME greater than GSH). These observations suggest that: a component of cytosolic Fraction B, designated 'deiodination factor B' (DFB), operates as an efficient intermediary to enhance activation of microsomal 5'-DI by thiols through a mechanism independent of GSH; thiols may participate in a non-specific thiol-disulphide exchange with inactive (oxidized) DFB to convert it into an active form that contains one or more thiol groups and is more effective than GSH or other thiols in facilitating the re-activation of inactive (oxidized) microsomal 5'-DI thiol (ESI) to its active state (ESH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号