首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For studying genetic differentiation caused by selection for adaptation and end-use, the allele frequencies of 42 microsatellites (MS), representative of the three wheat genomes, were analysed in a total of 60 wheat cultivars. The cultivars originate from three agroecological areas (AEAs) – Germany, Austria and Hungary – and represent equal numbers of ’quality wheats’ and ’feed wheats’ for each country. For the 42 loci, 202 alleles were detected using PAGE and silver staining. The average number of alleles per locus was 4.8, including four monomorphic loci. For 16 loci, null alleles were detected. Cluster analysis clearly differentiated the varieties according to the three AEAs and, within each AEA, into quality wheats from feed wheats. Analysis of variance revealed highly significant differences of distance data between AEAs as well as between quality groups. The correlation between genetic distance (GD) and pedigree data (coefficient of diversity, COD) was r s=0.45. The results have proven the excellent resolving power of MS in varietal differentiation, which arises through breeding under specific environmental conditions, and for different end-use. Received: 15 March 1999 / 17 June 1999  相似文献   

2.
Joy N  Prasanth VP  Soniya EV 《Genetica》2011,139(8):1033-1043
The genotypes of black pepper are morphologically and genotypically highly diverse and carry all the cumulative variations inherited and maintained through generations. The present study describes the Simple Sequence Repeat (SSR) or microsatellite based assessment of genetic diversity among forty popular genotypes and four different species of black pepper in Southern region of India. For isolation of SSR primers, our earlier attempts with enrichment strategies like ‘Triplex affinity capture’ did not extract a single SSR primer due to close proximity of restriction sites to the SSR motif. Hence we developed a ‘Sequential Reverse Genome Walking (SRGW)’ strategy with better enrichment efficiency of 72% that generated seven new SSR primers. Genotyping precisely discriminated majority of genotypes which indicated that the SSR primers are very informative. A total of 62 alleles with an average of 15.5 alleles over 4 loci were identified. All the SSR primers showed an average Polymorphism Information Content (PIC) value of 0.85. The estimated average Shared Allele Frequency ranged between 1.57 and 20.12%. The PCA plot revealed four closely related individual groups and identified Karimunda, Wild pepper and a local landrace ‘local b’ as the most divergent genotypes. Cluster analysis exposed the genetic relatedness between hybrids and selections with other known cultivars. The introduction of black pepper from South India to Malaysia was emphasized from the observation of genetic similarity of Malaysian cultivar ‘Kuching’ with other indigenous popular cultivars. The study was first to portray the precise genetic relatedness among the major indigenous genotypes of black pepper.  相似文献   

3.
Hai L  Wagner C  Friedt W 《Genetica》2007,130(3):213-225
Genetic diversity in spring bread wheat (T.aestivum L.) was studied in a total of 69 accessions. For this purpose, 52 microsatellite (SSR) markers were used and a total of 406 alleles were detected, of which 182 (44.8%) occurred at a frequency of <5% (rare alleles). The number of alleles per locus ranged from 2 to 14 with an average of 7.81. The largest number of alleles per locus occurred in the B genome (8.65) as␣compared to the A (8.43) and D (5.93) genomes, respectively. The polymorphism index content (PIC) value varied from 0.24 to 0.89 with an average of 0.68. The highest PIC for all accessions was found in the B␣genome (0.71) as compared to the A (0.68) and D␣genomes (0.63). Genetic distance-based method (standard UPGMA clustering) and a model-based method (structure analysis) were used for cluster analysis. The two methods led to analogical results. Analysis of molecular variance (AMOVA) showed that 80.6% of the total variation could be explained by the variance within the geographical groups. In comparison to the diversity detected for all accessions (H e = 0.68), genetic diversity among European spring bread wheats was H e = 0.65. A comparatively higher diversity was observed between wheat varieties from Southern European countries (Austria/Switzerland, Portugal/Spain) corresponding to those from other regions.  相似文献   

4.
Temporal changes in SSR allelic diversity of major rice cultivars in China   总被引:1,自引:0,他引:1  
Forty simple sequence repeats (SSRs) were used to assess the changes of diversity in 310 major Chinese rice cultivars grown during the 1950s-1990s. Of the 40 SSR loci, 39 were polymorphic. A total of 221 alleles were detected with an average of 5.7 alleles per locus (Na). The Nei's genetic diversity index (He) varied drastically among the loci (0.207 to 0.874, mean 0.625). Comparing the temporal changes in Na and He, the cultivars from the 1950s had more alleles and higher He scores than the cultivars from the other four decades. Analysis of molecular variance (AMOVA) indicated that the genetic differentiation among the five decades was not significant in the whole set, but significant within indica and japonica. More changes among the decades were revealed in indica cultivars than in japonica cultivars. Some alleles had been lost in current rice cultivars in the 1990s, occurring more frequently in indica. These results suggest that more elite alien genetic resources should be explored to widen the genetic backgrounds of rice cultivars currently grown in China.  相似文献   

5.
The genetic diversity and population genetic structure of the small yellow croaker (Larimichthys polyactis) were investigated. One hundred and fourteen individuals were sampled from 8 localities of the Yellow Sea and the northern East China Sea. Genetic variation in DNA sequences were examined from the first hypervariable region (HVR-1) of the mitochondrial DNA control region. High levels of haplotype diversity (h = 0.98 ± 0.87%) in the HVR-1 region were detected, indicating a high level of genetic diverstiy. A total of 84 polymorphic sites were found, and 87 haplotypes were defined. The pairwise nucleotide differences between samples ranged from 3.83 ± 2.19 to 6.56 ± 3.25. The demographic history of L. polyactis was examined by using neutrality tests and mismatch distribution analysis, which indicated a Pleistocene population expansion at about 49,300–197,000 years. The star burst structure of the minimum spanning tree also suggestted a very recent origin for most haplotypes. Hierarchical molecular variance analysis (AMOVA) and conventional population Fst comparisons revealed no significant genetic structure throughout the examined range, which is inconsistent with previous findings based on the morphological and ecological studies. Long-term dispersal and high gene flow likely have contributed to the genetically homogeneous population structure of the species. The knowledge on genetic diversity and genetic structure will be crucial to establish appropriate fishery management stocks for the species.  相似文献   

6.
During vegetative period 2004–2005 powdery mildew (Erysiphe graminis DC. f. sp. hordei Em. Marchal) field resistance of spring barley cultivars was investigated at the Lithuanian Institute of Agriculture. The spring barley genotypes tested were Lithuania-registered cultivars, cultivars from genetic resources collection, and the new cultivars used for initial breeding. In total, 23 resistance genes were present in the 84 cultivars studied. Among mono-genes only mlo and 1-B-53 showed very high resistance. Slight powdery mildew necroses (up to 3 scores) formed on cultivars possessing these genes. The maximal powdery mildew (PM) severity reached a score of 8.5 and the area under disease progress curve (AUDPC) a value of 1216.8. The cultivars ‘Primus’, ‘Astoria’, ‘Power’, ‘Harrington’ and ‘Scarlett’ were the most resistant among the non mlo cultivars. Severity of PM on ‘Primus’ reached a score of 3.5 (3.0 of PM necrosis) in average, the other cultivars were diseased from 4.5 (3.0) to 5.0 (2.0). The AUDPC values for these cultivars except ‘Scarlett’ were the lowest (85.0–145.3) among the other cultivars. The highest contrast in development of the other leaf diseases was between highly resistant and susceptible to PM cultivar groups. The fast development of PM depressed development of the other diseases 4.7 times.  相似文献   

7.
 Studies of allelic variations at six isozyme loci revealed genetic diversity of 380 East Asian accessions of the Barley Core Collection. Genetic variation was found in both cultivars and landraces in different regions. Allelic variations at the Aco-1 and Aco-2 loci were detected for East Asian barley for the first time. Moreover, the Aco-1 locus displayed the highest genetic diversity among the six loci assayed. Indian cultivars showed the highest diversity, followed by Korean and Chinese cultivars. Landraces from Bhutan and Nepal showed the lowest diversity. Cultivars had generally higher diversity than landraces within as well as among regions. The cluster analysis of genetic identity showed that all landraces from different countries can be placed in one group; the cultivars from Japan, India and Korea each form independent groups. Gpi-1 Gu, Pgd-1 Tj, Aco-1 Si, Ndh-2 D and Aco-2 A were rare alleles found in only a few accessions of 6-rowed barley. The Pgd-2 Tn allele was very rare in East Asian accessions. Received: 29 July 1998 / Accepted: 2 November 1998  相似文献   

8.
 A barley lambda-phage library was screened with (GA)n and (GT)n probes for developing microsatellite markers. The number of repeats ranged from 2 to 58 for GA and from 2 to 24 for GT. Fifteen selected microsatellite markers were highly polymorphic for barley. These microsatellite markers were used to estimate the genetic diversity among 163 barley genotypes chosen from the collection of the IPK Genebank, Germany. A total of 130 alleles were detected by 15 barley microsatellite markers. The number of alleles per microsatellite marker varied from 5 to 15. On average 8.6 alleles per locus were observed. Except for GMS004 all other barley microsatellite markers showed on average a high value of gene diversity ranging from 0.64 to 0.88. The mean value of gene diversity in the wild forms and landraces was 0.74, and even among the cultivars the gene diversity ranged from 0.30 to 0.86 with a mean of 0.72. No significant differences in polymorphism were detected by the GA and GT microsatellite markers. The estimated genetic distances revealed by the microsatellite markers were, on average , 0.75 for the wild forms, 0.72 for landraces and 0.70 among cultivars. The microsatellite markers were able to distinguish between different barley genotypes. The high degree of polymorphisms of microsatellite markers allows a rapid and efficient identification of barley genotypes. Received: 26 November 1997 / Accepted: 19 January 1998  相似文献   

9.
The genetic diversity among the Turkish cultivars of common bean (Phaseolus vulgaris L.) was estimated by studying the Sequence Related Amplified Polymorphism (SRAP), Peroxidase Gene Polymorhism (POGP), and Chloroplast Simple Sequence Repeats (cpSSR) markers. The unweighted pair group method arithmetic average (UPGMA) and Neighbor joining (NJ) algorithm resulted in a dendrogram representing the genetic relationship among major common bean cultivars grown in Turkey. The dendrogram generated two groups possibly representing two different major gene pools. By using three different marker systems, 194 alleles were detected and 118 were found to be polymorphic. For SRAP, POGP and cpSSR, 64, 64 and 26% polymorphism ratio were obtained, respectively. Principal Component Analysis (PCA) was also carried out to determine genetic variation among common bean genotypes and three different groups were generated. The individuals were placed into three different populations in structure analysis. Three populations created in structure analysis were exactly corresponded to the three groups in PCA. Analysis of Molecular Variance (AMOVA) was used to partition the genetic variations. The percentage of the variance was approximately 59%, 3%, and 38% among groups, among populations within groups and, within populations, respectively. The percentages of variation were found to be significantly high within the populations and among the groups.  相似文献   

10.
Rose (Rosa × hybrid L.) is one of the most important commercial ornamental crops cultivated worldwide for its beauty, fragrance and nutraceutical values. Characterization of rose germplasm provides precise information about the extent of diversity present among the cultivars. It also helps in cultivar identification, intellectual property right protection, variety improvement and genetic diversity conservation. In the present study, 109 Indian bred rose cultivars were characterized using 59 morphological and 48 SSR markers. Out of 48 SSRs used, 31 markers exhibited polymorphism and 96 alleles were identified with an average of 3.9 alleles per locus. Nei’s expected heterozygosity value of each locus ranged from 0.08 (with SSR ABRII/RPU32) to 0.78 (SSR Rh58). The similarity coefficient values ranged from 0.42 to 0.90 which indicated presence of moderated diversity among Indian cultivars. The neighbor-joining tree based on morphological data grouped the cultivars into two major clusters and several minor clusters based on their morphological resemblance. However, UPGMA dendrogram constructed using matching coefficient values grouped the cultivars into eight different clusters. Interpopulation analysis revealed higher genetic similarities between Hybrid Tea and Floribunda cultivars. An analysis for presence of population sub-structure grouped the Indian cultivars into eight different genetic groups. Analysis of molecular variance revealed apportioning of 97.59% of the variation to within subgroup diversity and 3.07% to between the cultivar groups. We have demonstrated here successful utilization of robust SSR to distinguish cultivars and assess genetic diversity among Indian bred rose cultivars. The information provided here is useful for cultivar identification and protection, cultivar improvement and genetic diversity conservation.  相似文献   

11.
Phellodendron amurense is an endangered tree with important medicinal and economic value in China. In this study, eight nuclear SSR primer pairs were employed to assess the genetic diversity and structure of 22 natural populations, including 516 individuals. A total of 66 alleles were detected with an average of 8.3 alleles per locus ranging from 3 to 17. The expected heterozygosity (He) of each SSR locus varied from 0.347 to 0.877 (average 0.627). Analysis of molecular variance (AMOVA) revealed that the main variation component existed within populations (95.11%) rather than among populations (4.89%). The Wilcoxon's sign-rank tests did not show any recent bottleneck effect in any population. A Mantel test displayed a significant correlation between the geographic distances and genetic distances for all populations (r = 0.566, P = 0.0001), indicating conformity to the isolation by distance model. Bayesian clustering and UPGMA supported grouping the populations into two groups. The present genetic structure of P. amurense may be explained by geographical isolation. The lack of genetic structure and genetic diversity decreased with increasing latitude within the Northeast China group may be due to postglacial northward expansion from a single refugium. Proper conservation measures are proposed for this species.  相似文献   

12.
One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (H G /H T = 0.853; 85.3%) and the among groups within total component (G GT = 0.147) accounted for the remaining 14.7%, of which ~64% accounted for among groups within clusters (G GC = 0.094) and ~36% among clusters (G CT = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and ~10% among groups within clusters, and ~3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms has resulted in a great deal of confusion in the identification and classification of cultivars in fig.  相似文献   

13.
Betelvine (Piper betle L., family Piperaceae) is an important, traditional and widely cultivated crop of India. The cultivators and consumers recognize more than 100 cultivars (landraces) based on regional and organoleptic considerations, while in terms of phytochemical constituents only five groups have been identified for all the landraces. Since betelvine is an obligate vegetatively propagated species, genomic changes, if any, may have become ‘fixed’ in the landraces. We carried out random amplified polymorphic DNA (RAPD) analysis in several landraces considered in four groups, namely, ‘Kapoori’, ‘Bangla’, ‘Sanchi’ and ‘Others’ in order to ascertain their genetic diversity. On the basis of the data from eleven RAPD primers, we distinguished genetic variation within and among the four groups of landraces. The results indicate the’Kapoori’ group is the most diverse. The neighbour joining (NJ) tree after a bootstrap (500 replicate) test of robustness clearly shows the four groups to be well separated. Interestingly, all known male or female betelvine landraces have separated in the NJ tree indicating an apparent gender-based distinction among the betelvines.  相似文献   

14.
 The cytoplasmic genetic male-sterile (CMS) lines developed at the International Rice Research Institute are valuable in producing tropical rice hybrids. Efficient use of CMS lines in hybrid rice production will depend on their level of genetic diversity. Aside from morphological characterization, molecular analysis based on DNA markers can provide information on the genetic diversity of the germplasm. The Amplified Fragment Length Polymorphism (AFLP) technique was used to fingerprint 71 CMS lines and four rice cultivars, ‘IR64’, ‘Azucena’, ‘IR74’, and ‘FR13A’. Eleven primer pair combinations specific to the enzymes PstI and MseI were used to generate 530 AFLP markers, 176 of which were polymorphic. Each CMS line revealed a distinct fingerprint. The AFLP marker-based dendrogram depicted genetic variation among the CMS lines. The CMS lines developed in japonica background grouped with ‘Azucena’, a japonica cultivar. None of the CMS lines clustered with ‘FR13A’, a flood-tolerant traditional indica variety. ‘IR64’ was found to be distinct from the other indica CMS lines and clustered with lines developed in its background. The grouping of CMS lines into a few groups is useful for breeders in selecting genetically diverse CMS lines for hybrid rice production and in avoiding test crossing every CMS line empirically. This study demonstrated that AFLP is a powerful and reliable tool in determining the genetic relationships and in producing distinct fingerprints of rice cultivars. Received: 20 December 1996 / Accepted: 9 October 1997  相似文献   

15.
16.
Carthamus tinctorius (2n = 2x = 24), commonly known as safflower, is widely cultivated in agricultural production systems of Asia, Europe, Australia, and the Americas as a source of high quality vegetable and industrial oil. Twenty-two RAPD primers, 18 SSR primers, and 10 AFLP primer combinations were used to assess: (1) the genetic diversity of 85 accessions (originating from 24 countries) representing global germplasm variability of safflower and (2) the interrelationships among safflower ‘centers of similarity’ or ‘regional gene pools’ proposed earlier. The RAPD and SSR primers and AFLP primer combinations revealed 57.6, 68.0, and 71.2% polymorphism, respectively, among 111, 72, and 330 genetic loci amplified from the accessions. The sum of effective number of alleles (66.44), resolving power (59.16), and marker index (51.3) explicitly revealed the relative superiority of AFLP as a marker system in uncovering variation in safflower. Overall, AFLP markers could recognize ‘centers of similarity’ or ‘regional gene pools’. Analysis of molecular variance and Shannon’s information index provided corroborating evidences for the present and previous studies that concluded fragmentation of safflower gene pool into many gene pools. Divergent directional selection is likely to have played an important role in shaping the diversity. From the practical applications standpoint, the diversity of Iran–Afghanistan gene pool is very high, equivalent to the total diversity of the species. The Far East gene pool is the least diverse. The present comprehensive input, first of its own kind in safflower, will assist marker based improvement programmes in the crop.  相似文献   

17.
Removing redundant germplasm from collections is one of the options for genebanks to increase the efficiency of their genetic resource management. Molecular characterisation of germplasm is thereby becoming more and more important to verify suspected duplication. AFLPs were used to characterise 29 flax accessions of material derived from research activities (hereafter termed ’’breeder’s line”). Based on similar accession names, the breeder’s lines could be classified into three series (’M 25’, ’Ru’ and ’Rm’) that were expected to contain redundancies. In addition, 12 reference cultivars were analysed. A total number of 144 polymorphic bands (59.8%) were scored among the 164 individuals investigated. In general, relatively high levels of intra-accession variation were found, even for the cultivars examined. This finding was not in line with the low outcrossing rates reported for flax. A cluster analysis grouped the ’Ru’ and ’Rm’ series together, indicating their close genetic relationship. An analysis of molecular variance (AMOVA) showed a significant group effect (fibre/oil flax) only for ’M 25’, explaining 34% of the variation observed within this series. For the cultivars 40.5% of the variation was distributed among accessions within groups and all pairwise comparisons were significantly different, except for one case. Both for the series of breeder’s lines and the cultivars the major part of the variation was distributed among individuals within accessions. This component constituted 80.7% and 83.6% of the total variation for the ’Ru’ and ’Rm’ series, respectively. Pairwise comparisons of accessions were performed by AMOVA in order to identify redundant germplasm. Stepwise bulking of accessions until all remaining accessions were significantly different showed that the 29 accessions of breeder’s lines could be reduced to 14. Only a small negative effect of this bulking approach on the among-population component of variance was observed, showing a reduction of 2.6%. Results are discussed in relation to improving the efficiency of collection management. Received: 25 June 2000 / Accepted: 27 October 2000  相似文献   

18.
Sweet sorghum (Sorghum bicolor L.) is a type of cultivated sorghums and has been recognized widely as potential alternative source of bio-fuel because of its high fermentable sugar content in the stalk. A substantial variation of sugar content and related traits is known to exist in US sweet sorghum. The objectives of the study were to assess the genetic diversity and relationship among the US sweet sorghum cultivars and lines using SSR markers and to examine the genetic variability within sweet sorghum accessions for sugar content. Sixty-eight sweet sorghum and four grain sorghum cultivars and lines were genotyped with 41 SSR markers that generated 132 alleles with an average of 3.22 alleles per locus. Polymorphism information content (PIC) value, a measure of gene diversity, was 0.40 with a range of 0.03–0.87. The genetic similarity co-efficient was estimated based on the segregation of the 132 SSR alleles. Clustering analysis based on the genetic similarity (GS) grouped the 72 sorghum accessions into 10 distinct clusters. Grouping based on clustering analysis was in good agreement with available pedigree and genetic background information. The study has revealed the genetic relationship of cultivars with unknown parentage to those with known parentage. A number of diverse pairs of sweet sorghum accessions were identified which were polymorphic at many SSR loci and significantly different for sugar content as well. Information generated from this study can be used to select parents for hybrid development to maximize the sugar content and total biomass, and development of segregating populations to map genes controlling sugar content in sweet sorghum.  相似文献   

19.
Genetic diversity analysis of common beans based on molecular markers   总被引:1,自引:0,他引:1  
A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.  相似文献   

20.
A highly polymorphic core collection of bread wheat and a more narrow-based breeding material, gathered from pedigrees of seven modern cultivars, was analysed in order to compare genetic diversity indices and linkage disequilibrium (LD) patterns along the chromosome 3B with microsatellite (SSR) and Diversity Arrays Technology markers. Five ancestral gene pools could be identified within the core collection, indicating a strong geographical structure (Northwest Europe, Southeast Europe, CIMMYT–ICARDA group, Asia, Nepal). The breeding material showed a temporal structure, corresponding to different periods of breeding programmes [old varieties (from old landraces to 1919), semi-modern varieties (1920–1959), modern varieties (1960–2006)]. Basic statistics showed a higher genetic diversity in the core collection than in the breeding material, indicating a stronger selection pressure in this latter material. More generally, the chromosome 3B had a lower diversity than the whole B-genome. LD was weak in all studied materials. Amongst geographical groups, the CIMMYT–ICARDA pool presented the longest ranged LD in contrast to Asian accessions. In the breeding material, LD increased from old cultivars to modern varieties. Genitors of seven modern cultivars were found to be different; most marker pairs in significant LD were observed amongst genitors of Alexandre and Koreli varieties, indicating an important inbreeding effect. At low genetic distances (0–5 cM), the breeding material had higher LD than the core collection, but globally the two materials had similar values in all classes. Marker pairs in significant LD are generally observed around the centromere in both arms and at distal position on the short arm of the chromosome 3B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号