首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes—and often presume a universal decline of ecosystem services with coral loss—rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous “bright spots,” where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low‐coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.  相似文献   

2.
Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises.  相似文献   

3.
珊瑚礁区的生物多样性及其生态功能   总被引:14,自引:0,他引:14  
珊瑚礁区生物多样性程度可以与陆地热带雨林相提并论,目前关于珊瑚礁物种多样性及其空间分布特征方面研究进展迅速,是生物多样性研究的重要基地。作为一种生态资源,珊瑚礁还具有重要的生态功能,近年来由于全球气候逐渐变暖、人类活动影响不断加剧,导致其生物多样性缩减、生态功能严重退化。珊瑚礁生态系统多样性、遗传多样性已成为珊瑚礁研究热点,珊瑚礁生态环境效应和保护管理方面的研究也越来越受到重视。我国珊瑚礁主要分布在广阔的南海海域和海南岛、台湾岛、香港和广东广西沿岸,礁区生物种类繁多,多样性程度较高,以往研究主要涉及地质、地貌、生物、环境等方面,现今和今后一段时间里迫切需要加强生物多样性和生态功能研究,以确保更有效地保护和管理珊瑚礁。  相似文献   

4.

Aim

Biodiversity loss is impacting essential ecosystem functions and services across the globe. Recently, our interest in the benefits of biodiversity for ecosystem function has shifted focus from measurements of species richness to functional diversity and composition. However, the additional importance of other community characteristics, such as species evenness and co-occurrence, for diversity-driven ecosystem function is less known. We used herbivorous coral reef fish as a model system to investigate how co-occurrence of different functional groups, rather than purely functional diversity, within an assemblage might affect the coral reef benthic state.

Location

Western Atlantic.

Time period

2007–2017.

Major taxa studied

Herbivorous reef fish.

Methods

We analysed benthic and fish assemblage data from 601 sites across 12 countries in the western Atlantic. Using diversity–interaction models, we investigated how the composition and relative abundances of reef fish functional groups were correlated with benthic cover and estimates of coral calcification rates. We used statistical interactions to explore the importance of co-occurrence of herbivorous fish functional groups for the coral reef benthic state.

Results

We found that co-occurrence of herbivorous fish functional groups, in addition to functional diversity, was correlated with reduced algal cover and increased coral accretion. Moreover, pairwise statistical interactions between functional groups were significantly correlated with an improvement in the coral reef benthic state.

Main conclusions

Our results support the idea that functional group co-occurrence, in addition to functional diversity, within herbivorous fish offers additional benefits to the coral reef benthic state. We identify farming damselfish and excavating parrotfish as potential key determinants of the coral reef benthic state and highlight that co-occurrence of cropping and scraping herbivores might promote coral accretion. Our findings support the argument that protecting herbivore abundance without regard to the species and functional groups present is not enough to preserve coral reef health and that fine-scale community composition must be considered.  相似文献   

5.
Ocean warming under climate change threatens coral reefs directly, through fatal heat stress to corals and indirectly, by boosting the energy of cyclones that cause coral destruction and loss of associated organisms. Although cyclone frequency is unlikely to rise, cyclone intensity is predicted to increase globally, causing more frequent occurrences of the most destructive cyclones with potentially severe consequences for coral reef ecosystems. While increasing heat stress is considered a pervasive risk to coral reefs, quantitative estimates of threats from cyclone intensification are lacking due to limited data on cyclone impacts to inform projections. Here, using extensive data from Australia's Great Barrier Reef (GBR), we show that increases in cyclone intensity predicted for this century are sufficient to greatly accelerate coral reef degradation. Coral losses on the outer GBR were small, localized and offset by gains on undisturbed reefs for more than a decade, despite numerous cyclones and periods of record heat stress, until three unusually intense cyclones over 5 years drove coral cover to record lows over >1500 km. Ecological damage was particularly severe in the central‐southern region where 68% of coral cover was destroyed over >1000 km, forcing record declines in the species richness and abundance of associated fish communities, with many local extirpations. Four years later, recovery of average coral cover was relatively slow and there were further declines in fish species richness and abundance. Slow recovery of community diversity appears likely from such a degraded starting point. Highly unusual characteristics of two of the cyclones, aside from high intensity, inflated the extent of severe ecological damage that would more typically have occurred over 100s of km. Modelling published predictions of future cyclone activity, the likelihood of more intense cyclones within time frames of coral recovery by mid‐century poses a global threat to coral reefs and dependent societies.  相似文献   

6.
南海主要珊瑚礁水域的鱼类物种多样性研究   总被引:27,自引:0,他引:27  
根据2004年5–7月和2005年3–4月采用深水三重刺网在南海的羚羊礁、华光礁、银砾滩、东岛、滨湄滩、排洪滩、本固暗沙、比微暗沙、武勇暗沙、海鸠暗沙、双子群礁、中业群礁、鲎藤礁、美济礁、仁爱礁、仙宾礁、南方浅滩、棕滩、大渊滩、永署礁、南薰礁、牛轭礁、道明群礁等23座主要珊瑚礁过渡性水域进行的2个航次专业调查资料, 分析了南海主要珊瑚礁水域的鱼类种类组成和群落特征。结果表明, 在珊瑚礁水域软骨鱼类以真鲨目和鲼目的种类数占优势, 硬骨鱼类以鲈形目和鲀形目的种类数占优势。相对重要指数(IRI)大于500的鱼类定为优势种, 西沙群岛有5种, 分别为迈氏条尾魟(Taeniura meyeni)、长吻裸颊鲷(Lethrinus miniatus)、胡椒鲷(Plectorhinchus pictus)、黄斑胡椒鲷(P. flavomaculatus)和灰六鳃鲨(Hexanchus griseus); 中沙群岛有6种, 分别为黄斑胡椒鲷、迈氏条尾魟、圆燕鱼(Platax orbicularis)、密斑刺鲀(Dioson hystrix)、红裸颊鲷(Lethrinus rubrioperculatus)和胡椒鲷; 南沙群岛有3种, 分别为黑梢真鲨(Carcharhinus limbatus)、灰三齿鲨(Triaenodon obesus)和星点鲹(Caranx stellatus)。针对南海珊瑚礁水域鱼类个体大小悬殊的特点, 本文分别以个体数和生物量为基础计算该水域的Margalef丰富度指数、Shannon-Wiener多样性指数、Simpson多样性指数和Pielou均匀度指数。物种组成的区域差异分析结果表明, 各珊瑚礁水域的鱼类物种无论与南海北部陆架海域还是与南沙西南陆架区相比都有明显的差异, 而属于相同生境类型水域的鱼类物种相似性较高。  相似文献   

7.
Numbers and biomass of piscivorous fish and their predation on other fish may often be high in undisturbed coral reef communities. The effects of such predation have sometimes been studied by removal of piscivores (either experimentally or by fishermen). Such perturbations have usually involved removal of large, highly vulnerable, mobile piscivores that are often actively sought in fisheries. The effects of fishing on smaller, demersal, semi-resident piscivores have been little studied. We studied such effects on the fish communities of patch reefs at Midway atoll by experimentally removing major resident, demersal, piscivorous fishes. First, four control reefs and four experimental reefs were selected, their dimensions and habitats mapped, and their visible fish communities censused repeatedly over 1 year. Census of all control and experimental reefs was continued for the following 39 months, during which known piscivores were collected repeatedly by hand spearing. Records were kept of catch and effort to calculate CPUE as an index of predator density. Spearfishing on the experimental reefs removed 2504 piscivorous fish from 12 families and 43 taxa (mostly species). The species richness of the catch did not show an overall change over the duration of the experiment. Spearman rank correlation analysis showed some unexpected positive correlations for density in numbers and biomass of major fished piscivorous groups (especially lizardfish) over the experiment. Only two relatively minor fished piscivorous taxa declined in abundance over the experiment, while the overall abundance of piscivores increased. Visual censuses of fish on the experimental reefs also failed to show reduction of total piscivores over the full experimental period. No significant trend in the abundance of lizardfish censused over the full period was apparent on any of the control reefs. The high resilience of piscivores on these experimental reefs to relatively intense fishing pressure could result from their protracted recruitment seasons, high immigration rates, cryptic habits, or naturally high abundances. A major factor was the high immigration rates of lizardfish, replacing lizardfish and other less mobile piscivores removed from the reefs by spearing. On the fished reefs, the removed lizardfish population replaced itself >20 times during the experiment; other piscivorous taxa replaced themselves only 5 times.  相似文献   

8.
On land, biodiversity hotspots typically arise from concentrations of small‐range endemics. For Indo‐Pacific corals and reef fishes, however, centres of high species richness and centres of high endemicity are not concordant. Moreover ranges are not, on average, smaller inside the Central Indo‐Pacific (CI‐P) biodiversity hotspot. The disparity between richness and endemicity arises because corals and reef fishes have strongly skewed range distributions, with many species being very widespread. Consequently, the largest ranges overlap to generate peaks in species richness near the equator and the CI‐P biodiversity hotspot, with only minor contributions from endemics. Furthermore, we find no relationship between the number of coral vs. fish endemics at locations throughout the Indo‐Pacific, even though total richness of the two groups is strongly correlated. The spatial separation of centres of endemicity and biodiversity hotspots in these taxa calls for a two‐pronged management strategy to address conservation needs.  相似文献   

9.
The perceived wide geographic range of organisms in the sea, facilitated by ready dispersal of waterborne dispersal stages, is a challenge for hypotheses of marine speciation but a boon to efforts of marine conservation. Wide species ranges are especially striking in the reef-rich Indo-west Pacific, the largest and most diverse marine biogeographic region, extending across half the planet. The insular marine biota of the tropical Pacific is characterized by wide-ranging species and provides the most striking examples of long distance dispersal, with endemism largely confined to the most remote island groups. Here we show that the gastropod Astralium "rhodostomum" has developed endemic clades on almost every Pacific archipelago sampled, a pattern unprecedented in marine biogeography, and reminiscent of the terrestrial biota of oceanic islands. Mitochondrial DNA sequences indicate that this species-complex is comprised of at least 30 geographically isolated clades, separated by as little as 180 km. Evidence suggests that such fine scale endemism and high diversity is not exceptional, but likely characterizes a substantial fraction of the reef biota. These results imply that (1) marine speciation can regularly occur over much finer spatial scales than generally accepted, (2) the diversity of coral reefs is even higher than suggested by morphology-based estimates, and (3) conservation efforts need to focus at the archipelagic level in the sea as on land.  相似文献   

10.
11.
Coral reefs are renowned for their spectacular biodiversity and the close links between fishes and corals. Despite extensive fossil records and common biogeographic histories, the evolution of these two key groups has rarely been considered together. We therefore examine recent advances in molecular phylogenetics and palaeoecology, and place the evolution of fishes and corals in a functional context. In critically reviewing the available fossil and phylogenetic evidence, we reveal a marked congruence in the evolution of the two groups. Despite one group consisting of swimming vertebrates and the other colonial symbiotic invertebrates, fishes and corals have remarkably similar evolutionary histories. In the Paleocene and Eocene [66–34 million years ago (Ma)] most modern fish and coral families were present, and both were represented by a wide range of functional morphotypes. However, there is little evidence of diversification at this time. By contrast, in the Oligocene and Miocene (34–5.3 Ma), both groups exhibited rapid lineage diversification. There is also evidence of increasing reef area, occupation of new habitats, increasing coral cover, and potentially, increasing fish abundance. Functionally, the Oligocene–Miocene is marked by the appearance of new fish and coral taxa associated with high‐turnover fast‐growth ecosystems and the colonization of reef flats. It is in this period that the functional characteristics of modern coral reefs were established. Most species, however, only arose in the last 5.3 million years (Myr; Plio–Pleistocene), with the average age of fish species being 5.3 Myr, and corals just 1.9 Myr. While these species are genetically distinct, phenotypic differences are often limited to variation in colour or minor morphological features. This suggests that the rapid increase in biodiversity during the last 5.3 Myr was not matched by changes in ecosystem function. For reef fishes, colour appears to be central to recent diversification. However, the presence of pigment patterns in the Eocene suggests that colour may not have driven recent diversification. Furthermore, the lack of functional changes in fishes or corals over the last 5 Myr raises questions over the role and importance of biodiversity in shaping the future of coral reefs.  相似文献   

12.
Under projections of global climate change and other stressors, significant changes in the ecology, structure and function of coral reefs are predicted. Current management strategies tend to look to the past to set goals, focusing on halting declines and restoring baseline conditions. Here, we explore a complementary approach to decision making that is based on the anticipation of future changes in ecosystem state, function and services. Reviewing the existing literature and utilizing a scenario planning approach, we explore how the structure of coral reef communities might change in the future in response to global climate change and overfishing. We incorporate uncertainties in our predictions by considering heterogeneity in reef types in relation to structural complexity and primary productivity. We examine 14 ecosystem services provided by reefs, and rate their sensitivity to a range of future scenarios and management options. Our predictions suggest that the efficacy of management is highly dependent on biophysical characteristics and reef state. Reserves are currently widely used and are predicted to remain effective for reefs with high structural complexity. However, when complexity is lost, maximizing service provision requires a broader portfolio of management approaches, including the provision of artificial complexity, coral restoration, fish aggregation devices and herbivore management. Increased use of such management tools will require capacity building and technique refinement and we therefore conclude that diversification of our management toolbox should be considered urgently to prepare for the challenges of managing reefs into the 21st century.  相似文献   

13.
Abstract . This paper assesses variation in coral species diversity within the Indonesian archipelago, and the influence of regional species pools, geomorphology and anthropogenic pollution on coral species diversity and occurrence. We obtained transects from 33 sites on 14 reefs in three regions of Indonesia: Ambon (Moluccas), South Sulawesi and the Java Sea. We determined the within‐site species richness by using species‐sampling curves. Cluster analysis and multi‐dimensional scaling showed that land‐based pollution was the primary determinant of coral species diversity and species occurrence on reefs. Relatively unaffected reference sites in eastern Indonesia were approximately 20% more diverse than Java Sea reference sites. Rare species formed a higher proportion of the coral fauna on eastern Indonesian sites, and eastern Indonesian apparent endemic species contributed approximately 25% of the total species pool sampled. Between‐site variation in species occurrence was lower on Java Sea reefs than on eastern Indonesian reefs. A larger species pool in eastern Indonesia than in the Java Sea probably accounted for most of the difference in within‐site species diversity between eastern Indonesian and Java Sea reference sites. High fishing intensity in the Java Sea, including destructive fishing practices, may have also contributed to reduced within‐site species diversity on Java Sea reference reefs. Despite the fact that the Java Sea was exposed during Pleistocene lowstands, and was recolonized by marine organisms only within the last 10 000 years, coral species diversity and assemblage composition on the Java Sea reefs was largely similar to open ocean reefs in eastern Indonesia.  相似文献   

14.
西沙群岛主要岛礁鱼类物种多样性及其群落格局   总被引:2,自引:1,他引:2  
为了解珊瑚礁海域鱼类物种多样性及其群落特征,作者2003年5月在西沙群岛7座主要岛礁(北礁、华光礁、金银岛、东岛、浪花礁、玉琢礁和永兴岛)采用底层刺网进行了调查,运用聚类分析和非度量多维标度(NMDS)等多元统计分析方法,对7个岛礁鱼类的种类组成、优势种、多样性和群落格局进行了分析.调查海域共记录鱼类146种,隶属10...  相似文献   

15.
Calls for coral reef restoration are increasing amidst continued declines, yet we know little about long‐term outcomes and conditions that lead to successful coral recovery. Here, we report on one of the longest monitoring studies following 16 years of large‐scale, “low‐tech” experimental reef rehabilitation on rubble fields created by chronic blast fishing in Komodo National Park, Indonesia. After blast fishing had stopped, in the absence of rehabilitation, hard coral cover in rubble fields remained about 3% from 1999 to 2016, but on rehabilitation treatments, cover increased from 0% in 2002 to 44.5% (±21.9% SD) in 2016. Coral cover varied among sites and treatments (ranging from <5 to >80% in 2016) in patterns that may reflect current strength and turbidity. Our results demonstrate that low‐tech substrate stabilization can facilitate natural coral recruitment and growth. We conclude that relatively low‐cost methods can deliver sustained rehabilitation of hard coral cover and that long‐term monitoring should be incorporated more widely in restoration activities to inform return on investment.  相似文献   

16.
Abstract Although eutrophication is frequently cited as an anthropogenic threat to coral-reef systems, very little is known about the effects of eutrophication on coral-reef fishes. In this paper, I explore how variation and similarity among fish species, and among the species with which they interact, may determine when population- or system-level responses to nutrient enrichment are most likely. Where functionally similar species exhibit complementary responses to environmental stress, ecosystem function may be maintained relatively unchanged although the relative abundance of species may shift dramatically. Alternatively, major changes in the ecosystem can occur if functionally similar species respond similarly to changes in the environment, if little functional complementarity or behavioural plasticity exists, or if feedback exists whereby changes in the fish assemblage cause further degradation of their coral habitat.  相似文献   

17.
高菲  许强  李秀保  何林文  王爱民 《生态学报》2022,42(11):4301-4312
珊瑚礁生态系统是一个高生产力、高生物多样性的特殊海洋生态系统,具有为生物提供栖息地、参与生物地球化学循环、防浪护岸、指示水体污染程度等生态功能。珊瑚礁生态系统的突出特点是其生境异质性很高,各种各样的生境斑块为种类繁多、习性各异的游泳和底栖生物提供栖息场所,这些礁栖生物通过参与各项生态过程而形成各种特定的功能群,共同完成重要的生态功能。在热带珊瑚礁生态系统中,海参是大型底栖动物区系的重要一员。种类繁多的海参具有各自不同的生境选择特征,通过摄食、运动等行为活动发挥着改良底质、促进有机物矿化和营养盐再生等生态作用。近几年来,全球热带海参受人类过度捕捞和珊瑚礁退化的影响而面临资源衰退、物种多样性丧失等问题,深入认识其生态学功能、加强热带海参资源保护迫在眉睫。综述了国内外热带珊瑚礁海参的基础生态学研究进展:海参对珊瑚礁生境斑块呈现显著的偏好选择特征以及种间差异和季节变动,不同生境斑块的食物质量、底质类型和水动力条件是影响海参生境偏好的重要因素;海参通过生物扰动可以改变珊瑚礁生境沉积物的含水量、渗透性、颗粒组成、再矿化率、无机营养物质释放速率以及孔隙水的化学梯度,并增加沉积物中的溶氧浓度、促进溶解...  相似文献   

18.
Coral reefs have reconstituted themselves after previous large sea-level variations, and climate changes. For the past 6000 years of unusually stable sea-level, reefs have grown without serious interruptions. During recent decades, however, new stresses threaten localized devastation of many reefs. A new period of global climate change is occurring, stimulated by anthropogenic increases in greenhouse gases. Coral reefs will cope well with predicted sea-level rises of 4.5 cm per decade, but reef islands will not. Higher sea levels will provide corals with greater room for growth across reef flats, but there are no foreseeable mechanisms for reef island growth to keep pace with sea-level rise, therefore many low islands may ultimately become uninhabitable. Climate change will introduce localized variations in weather patterns, but changes to individual reefs cannot be predicted. Reefs on average should cope well with regional climate change, as they have coped with similar previous fluctuations. Air temperature increases of 0.2–0.3 °C/decade will induce slower increases in sea-surface temperatures, which may cause localized, or regional increases in coral bleaching. Changes in rainfall will impact on reefs near land masses. Likewise, increased storms and variations in El Nino Southern Oscillation (ENSO) may stress some reefs, but not others. The greatest impact of climate change will be a synergistic enhancement of direct anthropogenic stresses (excessive sediment and pollution from the land; over-fishing, especially via destructive methods; mining of coral rock and sand; and engineering modifications), which currently cause most damage to coral reefs. Many of the world's reefs have been degraded and more will be damaged as anthropogenic impacts increase under the ‘demophoric’ increases in population (demos) and economic (phoric) activity. This biotic and habitat loss will result in severe economic and social losses. Reefs, however, have considerable recovery powers and losses can be minimized by effective management of direct human impacts and reducing indirect threats of global climate change.  相似文献   

19.
Coral reef fish perform numerous important functional roles on coral reefs. Of these, carbonate sediment production, as a by‐product of parrotfish feeding, is especially important for contributing to reef framework construction and reef‐associated landform development. However, only limited data exist on: (i) how production rates vary among reef habitats as a function of parrotfish assemblages, (ii) the relative importance of sediment produced from eroded, reworked, and endogenous sources, or (iii) the size fractions of sediment generated by different parrotfish species and size classes. These parameters influence not only overall reef‐derived sediment supply, but also influence the transport potential and depositional fate of this sedimentary material. Here, we show that parrotfish sediment production varies significantly between reef‐platform habitats on an atoll‐margin Maldivian reef. Highest rates of production (over 0.8 kg m−2 year−1) were calculated in three of the eight platform habitats; a rubble‐dominated zone, an Acropora spp. dominated zone, and a patch reef zone. Habitat spatial extent and differences in associated parrotfish assemblages strongly influenced the total quantities of sediment generated within each habitat. Nearly half of total parrotfish sediment production occurred in the rubble habitat, which comprised only 8% of the total platform area. Over 90% of this sedimentary material originated from eroded reef framework as opposed to being reworked existing or endogenously produced sediment, and comprised predominantly coral sands (predominantly 125–1000 µm in diameter). This is comparable to the dominant sand types and size fractions found on Maldivian reef islands. By contrast, nearly half of the sediment egested by parrotfish in the Acropora spp. dominated and patch reef habitats resulted from reworked existing sediments. These differences between habitats are a result of the different parrotfish assemblages supported. Endogenous carbonate production was found to be insignificant compared to the quantity of eroded and reworked material. Our findings have important implications for identifying key habitats and species which act as major sources of sediment for reef‐island systems.  相似文献   

20.
The evolution of ecological processes on coral reefs was examined based on Eocene fossil fishes from Monte Bolca, Italy and extant species from the Great Barrier Reef, Australia. Using ecologically relevant morphological metrics, we investigated the evolution of herbivory in surgeonfishes (Acanthuridae) and rabbitfishes (Siganidae). Eocene and Recent surgeonfishes showed remarkable similarities, with grazers, browsers and even specialized, long-snouted forms having Eocene analogues. These long-snouted Eocene species were probably pair-forming, crevice-feeding forms like their Recent counterparts. Although Eocene surgeonfishes likely played a critical role as herbivores during the origins of modern coral reefs, they lacked the novel morphologies seen in modern Acanthurus and Siganus (including eyes positioned high above their low-set mouths). Today, these forms dominate coral reefs in both abundance and species richness and are associated with feeding on shallow, exposed algal turfs. The radiation of these new forms, and their expansion into new habitats in the Oligocene–Miocene, reflects the second phase in the development of fish herbivory on coral reefs that is closely associated with the exploitation of highly productive short algal turfs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号