首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined whether the gizzard MHC gene is expressed in other smooth muscle tissues and, if so, whether there exist any smooth muscle MHC isoforms at the mRNA level. Northern blot analysis showed that the gizzard MHC gene was also expressed in the aorta and jejunum, but not in the pectoralis muscle or in fibroblasts. This indicates that striated muscle and non-muscle MHC isoforms are encoded in genes distinct from the smooth muscle MHC gene. Further, nuclease S1 mapping showed that the aortic smooth muscle MHC mRNA was distinct from the gizzard mRNA in the 5'-terminal coding region. Both of these mRNA species are expressed in the jejunum. These observations suggest that there exist at least two chicken smooth muscle MHC isoforms, vascular-type and intestinal-type, and that these isoforms are generated from a single-copy gene, probably by an alternative mRNA processing mechanism.  相似文献   

2.
Patterning of the gut into morphologically distinct regions results from the appropriate factors being expressed in strict spatial and temporal patterns to assign cells their fates in development. Often, the boundaries of gene expression early in development correspond to delineations between different regions of the adult gut. For example, Bmp4 is expressed throughout the hindgut and midgut, but is not expressed in the early gizzard. Ectopic BMP4 in the gizzard caused a thinning of the muscularis. To understand this phenotype we examined the expression of the receptors transducing BMP signaling during gut development. We find that the BMP receptors are differentially expressed in distinct regions of the chicken embryonic gut. By using constitutively activated versions of the BMP type I receptors, we find that the BMP receptors act similarly to BMP4 in the gizzard when ectopically expressed. We show that the mesodermal thinning seen upon ectopic BMP signaling is due to an increase in apoptosis and a decrease in proliferation within the gizzard mesoderm. The mesodermal thinning is characterized by a disorganization and lack of differentiation of smooth muscle in the gizzard mesoderm. Further, ectopic BMP receptors cause an upregulation of Nkx2.5, the pyloric sphincter marker, similar to that seen with ectopic BMP4. This upregulation of Nkx2.5 is a cell-autonomous event within the mesoderm of the gizzard. We also find that Nkx2.5 is necessary and sufficient for establishing aspects of pyloric sphincter differentiation.  相似文献   

3.
We have isolated two cDNA clones for myosin alkali light chain (MLC) mRNA from two respective cDNA libraries of chick gizzard and fibroblast cells by cross-hybridization to the previously isolated cDNA of skeletal muscle MLC. Sequence analysis of the two cloned cDNAs revealed that both of them are homologous to but distinct from the cDNA sequence used as the probe so that they may be classified into members of the MLC family, that they are identical with each other in the 3' and 5' untranslated sequence as well as in the coding sequence with a notable exception of a 39-nucleotide insertion in the fibroblast cDNA, 26 nucleotides of which are used for encoding the C-terminal amino acid sequence, and, therefore, that they encode the identical 142-amino acid sequence with different C-terminals of nine amino acids, each specific for fibroblast and gizzard smooth muscle MLC. The position of the inserted block corresponds exactly to one of the exon-intron junctions in the other MLC genes whose structures have so far been elucidated. DNA blot analysis suggested that the two MLC mRNAs of gizzard (smooth muscle) and fibroblast cells (nonmuscle) are generated from a single gene, probably through alternative RNA splicing mechanisms. RNA blot analysis and S1 nuclease mapping analysis using RNA preparations from fibroblast and gizzard tissues showed that the fibroblast MLC mRNA is expressed predominantly in fibroblast cells, but not, or very scantily if at all, in the gizzard, whereas the reverse is true for the gizzard smooth muscle MLC mRNA.  相似文献   

4.
5.
The anterior-posterior gut pattern is formed from three broad domains: fore-, mid-, and hindgut that have distinct functional, morphological, and molecular boundaries. The stomach demarcates the posterior boundary of the foregut. Avian stomachs are composed of two chambers: the anterior chamber (proventriculus) and the thick muscular posterior chamber (gizzard). Expression of candidate pattern formation control factors are restricted in the chick stomach regions such that Bmp4 and Wnt5a are not expressed in the gizzard. We previously implicated Bmp4 as controlling growth and differentiation of the gut musculature. Bmp4 is not expressed in the developing gizzard but is expressed in the rest of the gut including the adjacent proventriculus and midgut. Bapx1 (Nkx3.2) is expressed in the gizzard musculature but not in the proventriculus or midgut. We show ectopic expression of Bapx1 in the proventriculus results in a gizzard-like morphology and inhibits the normal proventricular expression of Bmp4 and Wnt5a. Overexpression of a reverse-function Bapx1 construct can result in a small stomach and ectopic extension of Bmp4 and Wnt5a expression into the gizzard. We suggest the role of Bapx1 is to regulate the expression of Bmp4 and Wnt5a to pattern the avian stomach.  相似文献   

6.
Fibroblast growth factor 10 (FGF10) is involved in numerous different aspects of embryonic development and especially in active epithelial-mesenchymal interactions during morphogenesis of many organs as a mesenchymal regulator by activating its receptors (FGFR1b and FGFR2b) expressed in the epithelial tissue. FGFR2b is also activated by FGF7 although FGF7 does not bind to FGFR1b. To provide basic data to analyze function of FGFs in the developing gut, here we cloned Fgf7 and studied expression patterns of Fgf7, Fgf10 and Fgfr1-4 during the development of chicken stomach (glandular stomach; proventriculus and muscular stomach; gizzard). Fgf10 is expressed both in the proventricular and gizzard mesenchyme while Fgf7 is expressed only in gizzard mesenchyme. Fgfr1-4 are expressed both in the epithelium and mesenchyme with a different spatial expression patterns. Furthermore, RT-PCR analysis reveals that Fgfr1b and Fgfr2b are expressed only in epithelia of both organs.  相似文献   

7.
Summary The avian stomach is composed of two distinct organs, the proventriculus and the gizzard. Pepsinogen expression in the proventricular and gizzard epithelia of chick embryos was investigated immunohistochemically with anti-embryonic chick pepsinogen (anti-ECPg) antiserum. In normal development, the ECPg antigen was expressed only in the glandular epithelial cells of the embryonic proventriculus from the 8th day of incubation onwards. However, both proventricular and gizzard epithelia of 6-day embryos expressed the ECPg antigen when recombined and cultured with the proventricular mesenchyme. Chronological studies revealed that the ECPg antigen was first detected in a few epithelial cells at 3 days of cultivation. The percentage of ECPg-positive cells among the total epithelial cells in each recombinant increased with the length of the culture period and all the glandular epithelial cells were positive at 9 days. During this process, the percentage of ECPg-positive cells in each cultured recombinant was similar in proventricular and gizzard epithelia. Moreover, both epithelia could express the ECPg antigen when recombined and cultured with the oesophageal or small-intestine mesenchyme for 9 days, though the percentage of ECPg-positive cells in each cultured recombinant was much lower than that in the cultured recombinant with the proventricular mesenchyme. These results indicate that the gizzard epithelium of 6-day chick embryos possesses a similar potential for pepsinogen expression as the proventricular epithelium of the same age.  相似文献   

8.
The 1979 amino acid sequence of embryonic chicken gizzard smooth muscle myosin heavy chain (MHC) have been determined by cloning and sequencing its cDNA. Genomic Southern analysis and Northern analysis with the cDNA sequence show that gizzard MHC is encoded by a single-copy gene, and this gene is expressed in the gizzard and aorta. The encoded protein has a calculated Mr of 229 X 10(3), and can be divided into a long alpha-helical rod and a globular head. Only 32 to 33% of the amino acid residues in the rod and 48 to 49% in the head are conserved when compared with nematode or vertebrate sarcomeric MHC sequences. However, the seven residue hydrophobic periodicity, together with the 28 and 196 residue repeat of charge distribution previously described in nematode myosin rod, are all present in the gizzard myosin rod. Two of the trypsin-sensitive sites in gizzard light meromyosin have been mapped by partial peptide sequencing to 99 nm and 60 nm from the tip of the myosin tail, where these sites coincide with the two "hinges" for the 6 S/10 S transition. In the head sequence, several polypeptide segments, including the regions around the putative ATP-binding site and the reactive thiol groups, are highly conserved. These areas presumably reflect conserved structural elements important for the function of myosin. A multi-domain folding model of myosin head is proposed on the basis of the conserved sequences, information on the topography of myosin in the literature, and the predicted secondary structures. In this model, Mg2+ ATP is bound to a pocket between two opposing alpha/beta domains, while actin undergoes electrostatic interactions with lysine-rich surface loops on two other domains. The actin-myosin interactions are thought to be modulated through relative movements of the domains induced by the binding of ATP.  相似文献   

9.
Wild type chicken gizzard caldesmon (756 amino acids) was expressed in a T7 RNA polymerase-based bacterial expression system at a yield of 1 mg pure caldesmon per litre bacterial culture. A mutant composed of amino acids 1-578 was also constructed and expressed. The wild type and mutant caldesmon were purified and compared with native chicken gizzard caldesmon. Native and wild type expressed caldesmon were indistinguishable in assays for inhibition of actin-tropomyosin activation of myosin ATPase, reversal of inhibition by Ca2+-calmodulin and binding to actin, actin-tropomyosin, Ca2+-calmodulin, tropomyosin and myosin. The mutant missing the C-terminal 178 amino acids had no inhibitory effect and did not bind to actin or Ca2+-calmodulin. It bound to tropomyosin with a 5-fold reduced affinity and to myosin with a greater than 10-fold reduced affinity.  相似文献   

10.
Wild type chicken gizzard caldesmon (756 amino acids) was expressed in a T7 RNA polymerase-based bacterial expression system at a yield of 1 mg pure caldesmon per litre bacterial culture. A mutant composed of amino acids 1-578 was also constructed and expressed. The wild type and mutant caldesmon were purified and compared with native chicken gizzard caldesmon. Native and wild type expressed caldesmon were indistinguishable in assays for inhibition of actin-tropomyosin activation of myosin ATPase, reversal of inhibition by Ca2+-calmodulin and binding to actin, actin-tropomyosin, Ca2+-calmodulin, tropomyosin and myosin. The mutant missing the C-terminal 178 amino acids had no inhibitory effect and did not bind to actin or Ca2+-calmodulin. It bound to tropomyosin with a 5-fold reduced affinity and to myosin with a greater than 10-fold reduced affinity.  相似文献   

11.
12.
Two cDNA clones representing mRNAs which are differentially expressed during in vitro culture of juvenile and mature leaf petioles of English ivy ( Hedera helix L.) were isolated by differential screening. The mRNA represented by clone HW101 is expressed at a higher level in untreated juvenile than in untreated mature in-vitro-cultured petioles. Treatment of petioles with α-naphthaleneacetic acid (NAA) at the initiation of culture decreases HW101 mRNA levels in juvenile but not mature, petioles. In intact plants. HW101 mRNA is expressed at a higher level in juvenile laminae, petioles and stems than in identical tissues of mature plants. DNA sequence analysis indicates that HW1O1 cDNA is significantly similar to a light harvesting chlorophyll a/b binding protein gene ( Lhcb ) of pea. The gene represented by the second clone. HW103, is expressed at a higher level in mature than in juvenile in-vitro-cultured petisoles. Treatment of petioles with NAA at the initiation of culture decreases HW103 mRNA levels in chronologically young mature but not older mature and juvenile petioles. However, expression of the HW103 gene is not detectable in petioles, or in any other vegetative organ tested, immediately after excision. It is, however, expressed in developing seeds. In otherwise intact plants, the HW103 gene is expressed in wounded petioles of mature plants 5 days after wounding but not in wounded petioles of juvenile plants. It is also expressed at a higher level in wounded stems of mature plants than in those of juvenile plants. However, it is not expressed in wounded lamina of either juvenile or mature plants. DNA sequence analysis indicates that HW103 cDNA is similar to a cell wall proline rich protein (PRP) gene of soybean. This is the first report of differential expression of a PRP gene in tissues from juvenile and mature plants. Southern blot analysis of nuclear DNA of H. helix shows that both HW101 and HW103 are members of small gene families.  相似文献   

13.
Summary The avian stomach is subdivided into two parts, the proventriculus and the gizzard. It has been shown that the gizzard epithelium can express embryonic chick pepsinogen (ECPg) antigen, a marker protein of the proventricular epithelium, as well as normal proventricular epithelium, under the appropriate experimental conditions. To study the possible mechanisms involved in the suppression of ECPg synthesis in the gizzard epithelium during normal development, we carried out heterotypic and heterochronic recombination experiments of the epithelium and mesenchyme of these two organ rudiments. When recombined and cultured with 6-day proventricular mesenchyme, gizzard epithelium of 3.5- to 12-day embryos expressed pepsinogen at all stages tested. However, the ratio of ECPg-positive cells to total epithelial cells in the gizzard epithelium decreased rapidly when epithelium older than 7 days was cultured with proventricular mesenchyme. In contrast to proventricular mesenchyme, 6-day gizzard mesenchyme did not allow ECPg expression in associated proventricular epithelium of 3.5- to 7-day embryos. These results indicate that gizzard epithelium does not express pepsinogen in normal development because of both a decrease in ability to express the enzyme in itself in the course of development and a repressive influence of gizzard mesenchyme.  相似文献   

14.
15.
鸡PPARγ基因的表达特性及其对脂肪细胞增殖分化的影响   总被引:1,自引:0,他引:1  
为分析鸡PPARγ基因的组织表达特性及其在脂肪细胞增殖和分化过程中的功能,文章以东北农业大学高、低腹脂双向选择品系肉鸡为实验材料,利用Western blotting方法,检测PPARγ基因的组织表达特性及其在高、低脂系肉鸡腹部脂肪组织间的表达差异;采用RNAi技术,在鸡原代脂肪细胞中抑制PPARγ基因的表达后,通过MTT和油红O提取比色的方法,研究鸡PPARγ基因对脂肪细胞增殖和分化的调控作用;利用Real-timePCR和Western blotting技术,分析PPARγ基因表达下调后,其他脂肪细胞分化转录因子以及与脂肪细胞分化相关的重要基因的表达变化情况。结果表明,PPARγ基因在7周龄高脂系肉鸡腹部脂肪组织、肌胃、脾脏、肾脏组织中表达量较高,在心脏中表达量较低,在肝脏、胸肌、腿肌、十二指肠中未检测到表达信号;与高脂系相比,PPARγ基因在5和7周龄低脂系肉鸡腹部脂肪组织中的表达量较低(P<0.05);PPARγ基因的表达量下降后,鸡脂肪细胞的增殖能力增强,分化能力减弱;同时,C/EBPα、SREBP1、A-FABP、Perilipin1、LPL、IGFBP-2基因的表达量均下降(P<0.05)。由此可见,PPARγ基因的表达可能与肉鸡腹部脂肪的沉积有一定的关系,该基因可能是调控鸡脂肪细胞增殖与分化的关键因子。  相似文献   

16.
Previous work demonstrated that the rabbit smooth muscle myosin heavy chain gene showed sequence divergence at the 25kDa/50kDa junction of the S1 subfragment when compared to chicken gizzard and chicken epithelial nonmuscle myosin. RNase protection analysis with a probe spanning this region detected two partially protected fragments which were not present in RNA from vascular tissue and only found in RNA from visceral tissue. The polymerase chain reaction was used to amplify a 162bp product from primers spanning the putative region of divergence and DNA sequence analysis revealed a seven amino acid insertion not previously detected in other characterised cDNA clones. RNase protection analysis using the PCR product as probe showed that the inserted sequence was expressed exclusively in RNA from visceral tissue. Similar RNA analysis showed that the visceral isoform was not expressed in 20 day fetal rabbit smooth muscle tissues. These results indicated that the new visceral isoform was expressed in a tissue-specific and developmentally regulated manner. Genomic DNA sequencing and mapping of the exon-intron boundaries showed that the visceral isoform was the product of cassette-type alternative splicing. The inclusion of a visceral-specific sequence near the Mg-ATPase domain and at the 25kDa/50kDa junction suggests that the visceral isoform may be important for myosin function in smooth muscle cells.  相似文献   

17.
Determination of the developmental fate in the small intestinal epithelium of the chicken embryo has not been fully analyzed up to the present. This study was carried out to analyze the determination time of the developmental fate of the small intestinal epithelium under the influence of other mesenchymes. The small intestinal epithelium reassociated and cultivated with the proventricular or gizzard mesenchyme or the dermis expressed chicken intestinal fatty acid binding protein, sucrase and CdxA as occurs during the normal development of the small intestinal epithelium. The presumptive intestinal endoderm taken from an earlier stage embryo and associated and cultivated with the proventricular or gizzard mesenchyme, showed gene expression patterns which were the same as those found in normal development. However, when the dermis was associated, the epithelium expressed sonic hedgehog, but never expressed intestinal epithelial- or stomach epithelial-markers. These results indicate that the determination of the developmental fate in the small intestinal epithelium and acquisition of autodifferentiation potency occur at the early stage of the gut development. Moreover the presumptive intestinal endoderm needs the supportive influence of the gut mesenchyme in order to differentiate fully into the intestinal epithelium.  相似文献   

18.
Cell type-specific expression of a human histone H1 gene   总被引:6,自引:0,他引:6  
  相似文献   

19.
20.
The 20-kDa regulatory myosin light chain (MLC), also known as MLC-2, plays an important role in the regulation of both smooth muscle and nonmuscle cell contractile activity. Phosphorylation of MLC-2 by the enzyme MLC kinase increases the actin-activated myosin ATPase activity and thereby regulates the contractile activity. We have isolated and characterized an MLC-2 cDNA corresponding to the human vascular smooth muscle MLC-2 isoform from a cDNA library derived from umbilical artery RNA. The translation of the in vitro synthesized mRNA, corresponding to the cDNA insert, in a rabbit reticulocyte lysate results in the synthesis of a 20,000-dalton protein that is immunoreactive with antibodies raised against purified chicken gizzard MLC-2. The derived amino acid sequence of the putative human smooth muscle MLC-2 shows only three amino acid differences when compared to chicken gizzard MLC-2. However, comparison with the human cardiac isoform reveals only 48% homology. Blot hybridizations and S1 nuclease analysis indicate that the human smooth muscle MLC-2 isoform is expressed restrictively in smooth muscle tissues such as colon and uterus and in some, but not all, nonmuscle cell lines. Previously reported MLC-2 cDNA from rat aortic smooth muscle cells in culture is ubiquitously expressed in all muscle and nonmuscle cells, and it was suggested that both smooth muscle and nonmuscle MLC-2 proteins are identical and are probably encoded by the same gene. In contrast, the human smooth muscle MLC-2 cDNA that we have characterized from an intact smooth muscle tissue is not expressed in skeletal and cardiac muscles and also in a number of nonmuscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号