首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death during anuran tail resorption is primarily brought about by apoptosis. Cathepsin D, a lysosomal aspartyl protease, is involved in the death of tail tissues. Thus, anuran tail resorption presents an ideal model to study cathepsin‐mediated cell death during vertebrate development. Present study describes the trend of specific activity of cathepsin D in the tail of different developmental stages and immunohistochemical localization of cathepsin D in the tail tissues of the common Asian toad, Duttaphrynus melanostictus. Cathepsin D was involved in programmed cell death in epidermis, muscle, spinal cord, and blood cells in the resorbing tail. Interestingly, it was also involved in the pre‐resorbing tail before visible tail resorption which indicates initiation of cell death even before actually the tail resorbs. Melanocytes were found to be one of the causative agents in degrading tail tissues and were associated with the degradation of muscle, epidermis and spinal cord of the resorbing tail. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
Xenopus larval keratin (XLK) was isolated by gel electrophoresis of proteins of tadpole skin. Screening of an expression cDNA library of tail tissues by specific polyclonal antibodies against XLK produced XLK cDNA (xlk). Its complete nucleotide and predicted amino acid sequences revealed that XLK was a new member of type II keratin. Screening of a cDNA library of adult Xenopus skin using an oligonucleotide probe which had been designed from well-conserved N-terminal amino acid sequences of the rod domain of type I keratin produced two cDNAs, xak-a and xak-b, which were found to be new members of type I keratin gene. Northern blot analysis showed that xlk was expressed exclusively in the larval skin whereas xak-a and xak-b were expressed exclusively in the adult skin. Their expression level was regulated in a region- and metamorphic stage- dependent manner during larval skin development. mRNA in situ hybridization experiments identified the cells that expressed xlk, and xak-a and xak-b as larva- specific epidermal cells (skein cells and basal cells), and adult suprabasal epidermal cells, respectively. These three genes were found to be late responsive to thyroid hormone. Phylogenetic relationships of these keratins with known ones are discussed.  相似文献   

3.
The thyroid gland synthesizes thyroxine (T4), which passes through the larval tadpole's circulatory system. The enzyme type II iodothyronine deiodinase (D2) converts thyroxine (T4) to the active hormone 3,5,3'-triiodothyronine (T3) in peripheral tissues. An early response to thyroid hormone (TH) in the Xenopus laevis tadpole is the stimulation of cell division in cells that line the brain ventricles, the lumen of the spinal cord, and the limb buds. These cells express constitutively high levels of D2 mRNA. Exogenous T4 induces early DNA synthesis in brain, spinal cord, and limb buds as efficiently as T3. The deiodinase inhibitor iopanoic acid blocks T4- but not T3-induced cell division. At metamorphic climax, both TH-induced cell division and D2 expression decrease in the brain. Then D2 expression appears in late-responding tissues including the anterior pituitary, the intestine, and the tail where cell division is reduced or absent. Therefore, constitutive expression of D2 occurs in the earliest target tissues of TH that will grow and differentiate, while TH-induced expression of D2 takes place in late-responding tissues that will remodel or die. This pattern of constitutive and induced D2 expression contributes to the timing of metamorphic changes in these tissues.  相似文献   

4.
Full-length zebrafish cDNAs encoding two aspartic proteinases were cloned and sequenced. One of the two cDNAs was a 1708 bp product with an open reading frame of 398 amino acid residues corresponding to a cathepsin D. The other was a 1383 bp product encoding a polypeptide chain of 416 amino acids homologous to nothepsin, an aspartic proteinase first identified by us in the liver of Antarctic Notothenioidei. Gene expression assessed by RT–PCR and northern blot hybridization of RNA from different tissues showed that the expression was tissue- and sex-specific. Whereas the cathepsin D gene was expressed in all the tissues examined independently of the sex, the nothepsin gene was expressed exclusively in female livers.  相似文献   

5.
Riggio M  Scudiero R  Filosa S  Parisi E 《Gene》2000,260(1-2):67-75
Full-length zebrafish cDNAs encoding two aspartic proteinases were cloned and sequenced. One of the two cDNAs was a 1708 bp product with an open reading frame of 398 amino acid residues corresponding to a cathepsin D. The other was a 1383 bp product encoding a polypeptide chain of 416 amino acids homologous to nothepsin, an aspartic proteinase first identified by us in the liver of Antarctic Notothenioidei. Gene expression assessed by RT–PCR and northern blot hybridization of RNA from different tissues showed that the expression was tissue- and sex-specific. Whereas the cathepsin D gene was expressed in all the tissues examined independently of the sex, the nothepsin gene was expressed exclusively in female livers.  相似文献   

6.
The drastic morphological changes of the tadpole are induced during the climax of anuran metamorphosis, when the concentration of endogenous thyroid hormone is maximal. The tadpole tail, which is twice as long as the body, shortens rapidly and disappears completely in several days. We isolated a cDNA clone, designated as Xl MMP-9TH, similar to the previously reported Xenopus laevis MMP-9 gene, and showed that their Xenopus tropicalis counterparts are located tandemly about 9 kb apart from each other in the genome. The Xenopus MMP-9TH gene was expressed in the regressing tail and gills and the remodeling intestine and central nervous system, and induced in thyroid hormone-treated tail-derived myoblastic cultured cells, while MMP-9 mRNA was detected in embryos. Three thyroid hormone response elements in the distal promoter and the first intron were involved in the upregulation of the Xl MMP-9TH gene by thyroid hormone in transient expression assays, and their relative positions are conserved between X. laevis and X. tropicalis promoters. These data strongly suggest that the MMP-9 gene was duplicated, and differentiated into two genes, one of which was specialized in a common ancestor of X. laevis and X. tropicalis to be expressed in degenerating and remodeling organs as a response to thyroid hormone during metamorphosis.  相似文献   

7.
In urodele amphibians like the newt, complete retina and lens regeneration occurs throughout their lives. In contrast, anuran amphibians retain this capacity only in the larval stage and quickly lose it during metamorphosis. It is believed that they are unable to regenerate these tissues after metamorphosis. However, contrary to this generally accepted notion, here we report that both the neural retina (NR) and lens regenerate following the surgical removal of these tissues in the anuran amphibian, Xenopus laevis, even in the mature animal. The NR regenerated both from the retinal pigment epithelial (RPE) cells by transdifferentiation and from the stem cells in the ciliary marginal zone (CMZ) by differentiation. In the early stage of NR regeneration (5-10 days post operation), RPE cells appeared to delaminate from the RPE layer and adhere to the remaining retinal vascular membrane. Thereafter, they underwent transdifferentiation to regenerate the NR layer. An in vitro culture study also revealed that RPE cells differentiated into neurons and that this was accelerated by the presence of FGF-2 and IGF-1. The source of the regenerating lens appeared to be remaining lens epithelium, suggesting that this is a kind of repair process rather than regeneration. Thus, we show for the first time that anuran amphibians retain the capacity for retinal regeneration after metamorphosis, similarly to urodeles, but that the mode of regeneration differs between the two orders. Our study provides a new tool for the molecular analysis of regulatory mechanisms involved in retinal and lens regeneration by providing an alternative animal model to the newt, the only other experimental model.  相似文献   

8.
Xi Y  Obara M  Ishida Y  Ikeda S  Yoshizato K 《Gene》2007,398(1-2):94-102
Cytoglobin (Cygb), a recently discovered vertebrate cytoplasmic heme-binding globin, is considered to be in a clade with vertebrate myoglobin (Mb), which is exclusively distributed in the cytoplasm of cardiac and skeletal muscles as an oxygen storage protein. GenBank databases (NCBI and JGI) and gene synteny analyses showed the absence of the Mb gene (mb) in two anuran amphibians, Xenopus laevis and X. tropicalis. Here we conducted comparative studies on the gene expression and tissue distribution of Cygb and Mb in anuran and reptilian tissues. Cygb and Mb genes were cloned from a reptile, iguana (Iguana iguana). Two types of cygb (cygb-1 and -2) were cloned, with lengths of 1066 and 1034 bp, and 196 and 193 amino acid residues, respectively. Their nucleotide and amino acid sequence identities were 90 and 87%, respectively. The Mb gene covered 1416 bp with an open reading frame of 465 bp, giving rise to a 154 amino acid protein. The distal ligand-binding histidine at E7, the proximal heme-binding histidine at F8, and the phenylalanine residue at CD1 were conserved in Mb and Cygb. The nucleotide and amino acid sequence identity of I. iguana cygb-1 and cygb-2 against X. laevis cygb were approximately 67% and 65%, respectively. RT-PCR demonstrated that X. laevis cygb was uniquely expressed in the heart and skeletal muscles, and faintly in the liver and spleen, which was quite contrasted with Iguana and the other vertebrates, where mb is exclusively expressed in the heart and skeletal muscles. Immunohistochemical analyses showed the distribution of Cygb in the cytoplasm of skeletal muscle cells. Interestingly, Cygb in the heart was localized in the nuclei. Considering the absence of mb in the Anura, we hypothesize that Cygb in muscle cells of anurans compensates for the lack of Mb for the storage and intracellular transportation of oxygen.  相似文献   

9.
In a continuing study of control processes of cerebral protein catabolism we compared the activity of cathepsin D from three sources (rat brain, bovine brain, and bovine spleen) on purified CNS proteins (tubulin, actin, calmodulin, S-100 and glial fibrillary acidic protein). The pH optimum was 5 for hydrolysis with tubulin as substrate for all three enzyme preparations, and it was pH 4 with the other substrates. The pH dependence curve was somewhat variable, with S-100 breakdown relatively more active at an acidic pH range. The formation of initial breakdown products and the further catabolism of the breakdown products was dependent on pH; hence the pattern of peptides formed from glial fibrillary acidic protein was different in incubations at different pH's. The relative activity of the enzyme preparations differed, depending on the substrate: with tubulin and S-100 as substrates, rat brain cathepsin D was the most active and the bovine spleen enzyme was the least active. With calmodulin and glial fibrillary acidic protein as substrates, rat brain and spleen cathepsin D activities were similar, and bovine brain cathepsin D showed the lowest activity. Actin breakdown fell between these two patterns.The rates of breakdown of the substrates were different; expressed as μg of substrate split per unit enzyme per h, with rat brain cathepsin D activity was 8–9 with calmodulin and S-100, 4 with glial fibrillary acidic protein, 1.8 with actin, and 0.9 with tubulin. The results show that there are differences in the properties of a protease like cathepsin D, depending on its source; furthermore, the rate of breakdown and the characteristics of breakdown are also dependent on the substrate.We recently measured the breakdown of brain tubulin by cerebral cathepsin D in a continuing study of the mechanisms and controls of cerebral protein catabolism (Bracco et al., 1982a). We found that tubulin breakdown is heterogeneous, that membrane-bound tubulin is resistant to cathepsin D but susceptible to thrombin (Bracco et al., 1982b), and that cytoplasmic tubulin was in at least two pools, one with a higher, another with a lower, rate of breakdown. The pH optimum of tubulin breakdown by cerebral cathepsin D differed significantly from the pH optimum of hemoglobin breakdown by the same enzyme.These findings showed that the properties of breakdown by a cerebral protease depend on the substrate. To further examine this dependence of properties of breakdown on the substrate, we now report measurements of pH dependence of breakdown of several purified proteins (tubulin, actin, calmodulin, S-100, glial fibrillary acidic protein [GFA]) from brain by cathepsin D preparations from three sources, rat brain, bovine brain, and bovine spleen. We also compare the rate of breakdown of the various proteins with the rate of hemoglobin breakdown.  相似文献   

10.
11.
Amputation of the larval tail of Xenopus injures the notochord, spinal cord, muscle masses, mesenchyme, and epidermis, induces the growth and differentiation of cells in those tissues, and results in tail regeneration. A dorsal incision in the larval tail injures the same tissues and induces cell growth and differentiation, but never results in the formation of any extra appendages. The first sign of tail regeneration is the multilayered wound epidermis and Xwnt-5a expression in the distal region, neither of which is observed in the recovering region after a dorsal incision. To evaluate the role of Xwnt-5a in tail regeneration, Xwnt-5a was overexpressed in the recovering region. When an animal cap injected with Xwnt-5a mRNA was grafted into the dorsal incision, an ectopic protrusion was formed. Morphological and molecular analyses revealed that the protrusion was an ectopic larval tail, which was equivalent to the regenerating tail but different from the tail that develops from the embryonic tail bud. Lineage labeling revealed that the major differentiated structures of the ectopic tail were formed from host cells, suggesting that Xwnt-5a induced host cells to make a complete tail. The ectopic tail was not induced by Xwnt-8 or Xwnt-11, demonstrating the specificity of Xwnt-5a in this process. A pharmacological study showed that JNK signaling is required in tail regeneration. These results support the proposition that Xwnt-5a plays an instructive role in larval tail regeneration via Wnt/JNK signaling.  相似文献   

12.
Riggio M  Scudiero R  Filosa S  Parisi E 《Gene》2002,295(2):241-246
Aspartic proteinases are a group of endoproteolytic proteinases active at acidic pH and characterized by the presence of two aspartyl residues in the active site. They include related paralogous proteins such as cathepsin D, cathepsin E and pepsin. Although extensively investigated in mammals, aspartic proteinases have been less studied in other vertebrates. In a previous work, we cloned and sequenced a DNA complementary to RNA encoding an enzyme present in zebrafish liver. The sequence resulted to be homologous to a novel form of aspartic proteinase firstly described by us in Antarctic fish. In zebrafish, the gene encoding this enzyme is expressed only in the female liver, in contrast with cathepsin D that is expressed in all the tissues examined independently of the sex. For this reason we have termed the new enzyme liver-specific aspartic proteinase (LAP).Northern blot analyses indicate that LAP gene expression is under hormonal control. Indeed, in oestrogen-treated male fish, cathepsin D expression was not enhanced in the various tissues examined, but the LAP gene product appeared exclusively in the liver. Our results provide evidence for an oestrogen-induced expression of LAP gene in liver. We postulate that the sexual dimorphic expression of the LAP gene may be related to the reproductive process.  相似文献   

13.
家蚕组织蛋白酶D基因的克隆、序列分析及其表达谱研究   总被引:2,自引:0,他引:2  
组织蛋白酶D (cathepsin D,CtD)是溶酶体内天冬氨酸内切蛋白酶,参与机体多种生理病理过程,尤其在昆虫的发育变态过程中起着重要作用。利用NCBI上登录的组织蛋白酶D基因核酸序列和家蚕Bombyx mori表达序列标签(expressed sequence tags, EST)数据库,进行电子克隆获得家蚕组织蛋白酶D (BmCtD) 基因的全长cDNA (DQ010007)。该cDNA大小为1 543 bp,其中ORF长1 152 bp,同源性分析表明BmCtD与其他物种的CtD具有较高的相似性。BmCtD的mRNA存在选择性拼接,另外一种mRNA形式命名为BmCtDⅠ。RT-PCR实验表明该基因在本实验所调查的家蚕不同发育时期和组织中都有表达。  相似文献   

14.
Carboxylesterase-like enzyme cDNAs have been cloned and sequenced from malathion-resistant and susceptible strains of the parasitoid Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae). The cDNAs consist of 1963 nucleotides including a 35 bp untranslated 5'-end, a 1596 bp open reading frame, and a 332 bp untranslated 3'-end. The open reading frame encodes 532 amino acid residues. The predicted protein sequence from these cDNAs includes 2 potential N-glycosylation sites, a carboxylesterase type-B serine active site FGGDSENVTIFGESAG, and conserved residues Ser187, Glu317, and His432 to function as the catalytic triad. The predicted carboxylesterase-like enzyme sequence is most similar to that of the carboxylesterase from the peach-potato aphid, Myzus persicae with 45% sequence identity. Alignment of the parasitoid carboxylesterase-like enzyme cDNAs revealed that there are two nucleotide differences in the open reading frame between the parasitoid strains, including a silent mutation and a point mutation that presumably causes a gene product difference. A nucleotide thymine at position 658 in the susceptible strain cDNA is replaced by a guanine in the resistant strain cDNA. This substitution leads to an amino acid change from tryptophan (Trp220) in the susceptible strain to glycine (Gly220) in the resistant strain. This substitution is genetically linked to resistance but it is not known how or if this amino acid substitution affects detoxification of malathion. Northern blot analyses demonstrated that expression level of the carboxylesterase-like enzyme mRNA in adult A. calandrae is approximately 30-fold higher in the resistant strain relative to that in the susceptible strain. Southern analysis indicated that Pst I or Eco RI restriction sites are different in the two strains. Both a modified gene structure and an increase in expression of carboxylesterase may be responsible for the high level of resistance found in this beneficial wasp.  相似文献   

15.
During anuran metamorphosis, larval cells of the tadpole are completely eliminated and replaced by adult cells in the corresponding tissues of the frog for the adaptation to terrestrial life from an aquatic life. Before the metamorphic climax, most of the cells have already transformed from larval cells into adult-type cells, but the tail cells remain as larval cells even at the climax stages of metamorphosis. In our previous works, we demonstrated that larval skin grafts are rejected by an inbred strain of adult Xenopus and that the larval cells are recognized and made apoptotic by splenocytes obtained from adults and/or metamorphosing tadpoles in vitro (Y. Izutsu and K. Yoshizato, 1993, J. Exp. Zool. 266, 163-167; Y. Izutsu et al., 1996, Differentiation 60, 277-286). In the present study, it was found that there were two types of larval epidermal cells, classified according to the presence of major histocompatibility complex (MHC); one is the apical cell expressing both MHC classes I and II, and the other is the skein cell, which expresses no MHC. By a Percoll gradient, we were able to separate these two types of cells and examined the proliferative response of adult T cells to each of them. It was revealed that the apical cells (MHC-positive) were recognized directly by adult splenic T cells, whereas the skein cells (MHC-negative) were recognized by the T cells via the antigen presentation by adult splenocytes. Both of these proliferative responses were restricted to MHC class II. This is the first report showing how the larval-specific antigens present in different forms in epidermal cells are recognized as immunological targets by syngeneic adult T lymphocytes.  相似文献   

16.
It has been shown that larval skin (LS) grafts are rejected by an inbred strain of adult Xenopus, which suggests a mechanism of metamorphosis by which larval cells are recognized and attacked by the newly differentiating immune system, including T lymphocytes. In an attempt to define the larval antigenic molecules that are targeted by the adult immune system, anti-LS antibodies (IgY) were produced by immunizing adult frogs with syngeneic LS grafts. The antigen molecules that reacted specifically with this anti-LS antiserum were localized only in the larval epidermal cells. Of 53 and 59-60 kDa acidic proteins that were reactive with anti-LS antibodies, a protein of 59 kDa and with an isoelectric point of 4.5 was selected for determination of a 19 amino acid sequence (larval peptide). The rat antiserum raised against this peptide was specifically reactive with the 59 kDa molecules of LS lysates. Immunofluorescence studies using these antisera revealed that the larval-specific molecules were localized in both the tail and trunk epidermis of premetamorphic larvae, but were reduced in the trunk regions during metamorphosis, and at the climax stage of metamorphosis were detected only in the regressing tail epidermis. Culture of splenocytes from LS-immunized adult frogs in the presence of larval peptide induced augmented proliferative responses. Cultures of larval tail pieces in T cell-enriched splenocytes from normal frogs or in natural killer (NK)-cell-enriched splenocytes from early thymectomized frogs both resulted in significant destruction of tail pieces. Tissue destruction in the latter was enhanced when anti-LS antiserum was added to the culture. These results indicate that degeneration of tail tissues during metamorphosis is induced by a mechanism such that the larval-specific antigen molecules expressed in the tail epidermis are recognized as foreign by the newly developing adult immune system, and destroyed by cytotoxic T lymphocytes and/or NK cells.  相似文献   

17.
T J Baranski  P L Faust  S Kornfeld 《Cell》1990,63(2):281-291
Lysosomal enzymes contain a common protein determinant that is recognized by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, the initial enzyme in the formation of mannose 6-phosphate residues. To identify this protein determinant, we constructed chimeric molecules between two aspartyl proteases: cathepsin D, a lysosomal enzyme, and pepsinogen, a secretory protein. When expressed in Xenopus oocytes, the oligosaccharides of cathepsin D were efficiently phosphorylated, whereas the oligosaccharides of a glycosylated form of pepsinogen were not phosphorylated. The combined substitution of two noncontinuous sequences of cathepsin D (lysine 203 and amino acids 265-292) into the analogous positions of glycopepsinogen resulted in phosphorylation of the oligosaccharides of the expressed chimeric molecule. These two sequences are in direct apposition on the surface of the molecule, indicating that amino acids from different regions come together in three-dimensional space to form this recognition domain. Other regions of cathepsin D were identified that may be components of a more extensive recognition marker.  相似文献   

18.
Schistosomes are considered the most important of the helminth parasites of humans in terms of morbidity and mortality. Schistosomes employ proteolytic enzymes to digest host hemoglobin from ingested human blood, including a cathepsin D-like, aspartic protease that is overexpressed in the gut of the adult female schistosome. Because of its key role in parasite nutrition, this enzyme represents a potential intervention target. To continue exploration of this potential, here we have determined the sequence, structure and genomic organization of the cathepsin D gene locus of Schistosoma mansoni. Using the cDNA encoding S. mansoni cathepsin D as a probe, we isolated several positive bacterial artificial chromosomes (BAC) from a BAC library that represents an approximately 8-fold coverage of the schistosome genome. Sequencing of BAC clone 25-J-24 revealed that the cathepsin D gene locus was approximately 13 kb in length, and included seven exons interrupted by six introns. The exons ranged in length from 49 to 294 bp, and the introns from 30 to 5025 bp. The genomic organization of schistosome cathepsin D was similar in sequence, structure and complexity to human cathepsin D, including to a greater or lesser extent the conservation of all six exon/intron boundaries of the schistosome gene. It was less similar to aspartic protease genes of the nematodes Caenorhabditis elegans and Haemonchus contortus, and dissimilar to those of plasmepsins from malarial parasites. Examination of the introns revealed the presence of endogenous mobile genetic elements including SR2, the ASL-associated retrotransposon, and the SINE-like element, SMalpha. Phylogenetically, schistosome cathepsin D appeared to be more closely related to mammalian cathepsin D than to other sub-families of eukaryotic aspartic proteases known from mammals. Taken together, these features indicated that schistosome cathepsin D is a platyhelminth orthologue of mammalian lysosomal cathepsin D.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号