首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mutant strain of Escherichia coli K-12 which is unable to transfer genetic material at 42 C has been isolated. Although transfer is inhibited at this temperature, the formation of specific pairs is unaffected. This strain and its derivatives also show an altered sensitivity to certain ribonucleic acid-containing male specific phages at 42 C. Both phenotypic changes are reversed when a derepressed fi(+) R factor is present in the same cell and a revertant which has regained both activities has been obtained. The nature of the temperature-sensitive defect and its effect on the conjugation process are discussed.  相似文献   

2.
Temperature-Sensitive Osmotic Remedial Mutants of Escherichia coli   总被引:6,自引:4,他引:6       下载免费PDF全文
A collection of temperature-sensitive mutants of Escherichia coli K-12 was examined for ability to grow at the restrictive temperature when the osmotic pressure of the medium was increased. Five of the fourteen mutants were found to be osmotic remedial. Four strains containing temperature-sensitive, osmotic-remedial mutations affecting aminoacyl-transfer ribonucleic acid synthetases were found to have altered permeability characteristics which may be attributable to changes in the lipopolysaccharide layer of the cell envelope at restrictive temperatures.  相似文献   

3.
The properties of Escherichia coli mutant D2-47LT indicate that it is temperature-sensitive for a protein required for the initiation of chromosome replication. The results of several different experiments are consistent with this hypothesis, and no support was found for the alternate hypotheses tested. Although the strain is usually unable to initiate replication at 42 C, some of the initiation proteins are apparently synthesized at the restrictive temperature. This can cause initiation on partially replicated, but not completed, chromosomes. It appears that the temperature-sensitive protein is required for initiation on completed chromosomes.  相似文献   

4.
Cells containing nonsense mutations in essential genes have been isolated in a strain of Escherichia coli that carried the su4(ts) gene which specifies a temperature-sensitive tyrosine transfer ribonucleic acid. Such cells are unable to form colonies at temperatures which inactivate this suppressor transfer ribonucleic acid. A screening procedure for the identification of mutants that carry temperature-sensitive nonsense mutations in essential genes is described, and certain properties of two such mutants are reported.  相似文献   

5.
Escherichia coli fil ts forms multinucleate filaments when suspensions of about 10(7) organisms per ml are shifted from 37 to 43 C in rich medium. Occasional septation continues, chiefly at the poles, and immediately becomes more frequent when the filaments are returned to 37 C. The addition of chloramphenicol (200 mug/ml) at either temperature initially stimulates the formation of polar septa. When very dilute suspensions of the strain (<10(6) organisms per ml) are shifted to the restrictive temperature, the inhibition of septation is more complete and only seldom reversible. Conversely, cell division is little affected when suspensions of >10(8) organisms per ml, or microcolonies of several hundred organisms on agar, are incubated at 43 C; evidence is presented that this is a consequence of a slight reduction in the mutant's growth rate. In certain media, septation is blocked irreversibly by even brief exposure to 43 C, after which cell elongation without division proceeds at 37 C for some hours. Several findings, when considered together, suggest that the cytoplasmic membrane is normal at the restrictive temperature, and that the block in septation is caused by a defect in the cell wall: it is largely overcome by NaCl, but not by sucrose; in some circumstances the filaments become swollen and develop localized bulges in the wall, yet the membrane remains intact and retains its selective permeability; lastly, the strain is insensitive to deoxycholate at both temperatures. The mutation has been mapped between arg B and thr, at a locus which appears to be distinct from others known primarily to influence cell division.  相似文献   

6.
We have isolated a strain of Escherichia coli K-12 carrying a mutation, polA12, that results in the synthesis of a temperature-sensitive deoxyribonucleic acid (DNA) polymerase I. The double mutants polA12 recA56 and polA12 recB21, constructed at 30 C, are inviable at 42 C. About 90% of the cells of both double mutants die after 2 hr of incubation at 42 C. Both double mutants filament at 42 C and show a dependence on high cell density for growth at 30 C. In polA12 recB21 cells at 42 C, DNA and protein synthesis gradually stop in parallel. In polA12 recA56 cells, DNA synthesis continues for at least 1 hr at 42 C, and there is extensive DNA degradation. The results suggest that the primary lesion in these double mutants is not in DNA replication per se.  相似文献   

7.
An Escherichia coli mutant dependent on exogenous transfer ribonucleic acid (RNA) for bulk RNA formation at 42 C has been isolated, starting from a parental strain permeable to RNA. In the absence of added transfer RNA at the high temperature, protein synthesis stopped, and the strain formed little if any ribosomal RNA.  相似文献   

8.
Mutants with impaired biosynthesis of unsaturated fatty acids or altered metabolism of the phospholipids were isolated at a rather high frequency from a set of temperature-sensitive lysis mutants. It is suggested that preselection for the lysis phenotype makes it possible to isolate several kinds of mutants affected in the integrity of the cytoplasmic membrane.  相似文献   

9.
The ability of Escherichia coli to grow on a series of acetylated and glycosylated compounds has been investigated. It is surmised that E. coli maintains low levels of nonspecific esterase activity. This observation may have ramifications for previous reports that relied on nonspecific esterases from E. coli to genetically encode nonnatural amino acids. It had been reported that nonspecific esterases from E. coli deacetylate tri-acetyl O-linked glycosylated serine and threonine in vivo. The glycosylated amino acids were reported to have been genetically encoded into proteins in response to the amber stop codon. However, it is our contention that such amino acids are not utilized in this manner within E. coli. The current results report in vitro analysis of the original enzyme and an in vivo analysis of a glycosylated amino acid. It is concluded that the amber suppression method with nonnatural amino acids may require a caveat for use in certain instances.The central question addressed in this paper is whether the glycosylated amino acids GlcNAc-Ser and GalNAc-Thr have been genetically encoded into proteins in vivo (1, 2). The reports for the incorporation of these two amino acids are unique from all other reports (3) that have incorporated unnatural amino acids using the recoded UAG codon and Methanococcus jannaschii orthogonal pairs in that these two amino acids required further processing by the host organism before incorporation (see Fig. 1). Here we posit that the primary barrier to their incorporation would appear to be the fact that the host organism used in the original reports, Escherichia coli, maintains very low levels of nonspecific esterase activity. In fact, the original reports used citations from mammalian biology to substantiate the nonspecific esterase mechanism (see below).Open in a separate windowFIGURE 1.Proposed product of an esterase with GlcNAc-Ser and other esterase substrates discussed in this study.E. coli is likely the most thoroughly studied microorganism. This is especially true in regard to carbohydrate and amino acid uptake and utilization (4). Therefore, it should not be surprising that it has long been known that esterified carbon sources are not metabolized by E. coli in standard assays used to probe for microorganism lipase and esterase activity (5). Such results and our current analysis underscore the limitations of the reports that triacetyl O-linked glycosylated amino acids (GlcNAc-Ser and GalNAc-Thr) were deacetylated in E. coli by endogenous “nonspecific” esterases. The deacetylated amino acids were then believed to have been genetically encoded into full-length proteins in vivo (1, 2).In these previous studies the glycosylated amino acids were provided to the growth media as their tetraacetate analogs, and it was construed from the mass spectra and lectin binding assays that the ester groups of the saccharide had all been hydrolyzed. The notion that E. coli rapidly hydrolyzes a simple ester is not easily reconciled with what is commonly observed when the ester functional group is introduced into cultures of E. coli. For example, we were prompted by reports that claimed to have harvested β-hydroxy esters from E. coli (6). There was nothing in such a report to indicate that the E. coli strain used had undergone a drastic genetic modification beyond the introduction of one enzyme derived from yeast. The enzyme from yeast was expressed in E. coli to asymmetrically reduce β-keto esters to the corresponding β-hydroxy esters. The reduction was accomplished in 87% yield and was performed in whole cells. It stands to reason that such a report having claimed to extract significant amounts of an esterified product would not be possible if E. coli maintained even moderate levels of nonspecific esterase activity. The fact that E. coli maintains low levels of endogenous esterases and lipases has been quite pivotal for a number of studies that have used this organism as the host to express esterase genes in vivo (see below).Nonspecific esterase activity is common in eukaryotic organisms, for example, our ability to hydrolyze triacylglycerides to access an important energy source, but this stands in stark contrast to E. coli where it is possible to directly extract O-acetylated oligosaccharides (7) and other simple esters (6) in high yields. These reports are consistent with the observation that UDP-2,3-diacylglucosamine accumulates in E. coli when genes from lipid biosynthesis are deleted (8). E. coli is also the preferred host for evaluating esterase and lipase activity when screening genes from cultured and uncultured organisms (9, 10). Screening for lipase activity from various microorganisms is often performed on tributyrin agar plates (11). The results are typically the same as for triacetin, and it is repeatedly observed that E. coli does not naturally grow on triesters of glycerol (12, 13). These and many other similar esterase screens (14) would not have been feasible if E. coli produced even moderate levels of a lipase or nonspecific esterase.In the present article we use a combination of our current findings and a thorough review of the relevant literature to conclude that E. coli may not maintain sufficient levels of nonspecific esterase activity to permit the in vivo incorporation of the glycosylated amino acids by the mechanism reported (Fig. 1). Our conclusion is further supported by isothermal calorimetry measurements of Zhang et al. (1) original enzyme showing it retains considerable wild-type activity. We also show that the amino acid GlcNAc-Ser appears to be metabolized in E. coli.  相似文献   

10.
M. Monk  J. Kinross    C. Town 《Journal of bacteriology》1973,114(3):1014-1017
recA and recB derivatives of a strain of Escherichia coli with a temperature-sensitive deoxyribonucleic acid (DNA) polymerase I (polA12) are inviable at high temperature, but continue to incorporate (3)H-thymine into DNA for extended periods. The DNA made in pulse-chase experiments at high temperature in the polA12 parent and its double-mutant derivatives has been examined by alkaline sucrose gradient sedimentation analysis. The low-molecular-weight DNA fragments made during short pulses were joined at the same rate in each strain. Furthermore, the resulting high-molecular-weight DNA was of the same size in each case and was stable for at least 50 min. It is concluded that the inviability of the double mutants is due neither to a defect in converting low-molecular-weight DNA intermediates to high molecular weight nor to the presence of unrepaired random breaks in their DNA.  相似文献   

11.
Escherichia coli has only a single copy of a gene for tRNA6Leu (Y. Komine et al., J. Mol. Biol. 212:579–598, 1990). The anticodon of this tRNA is CAA (the wobble position C is modified to O2-methylcytidine), and it recognizes the codon UUG. Since UUG is also recognized by tRNA4Leu, which has UAA (the wobble position U is modified to 5-carboxymethylaminomethyl-O2-methyluridine) as its anticodon, tRNA6Leu is not essential for protein synthesis. The BT63 strain has a mutation in the anticodon of tRNA6Leu with a change from CAA to CUA, which results in the amber suppressor activity of this strain (supP, Su+6). We isolated 18 temperature-sensitive (ts) mutants of the BT63 strain whose temperature sensitivity was complemented by introduction of the wild-type gene for tRNA6Leu. These tRNA6Leu-requiring mutants were classified into two groups. The 10 group I mutants had a mutation in the miaA gene, whose product is involved in a modification of tRNAs that stabilizes codon-anticodon interactions. Overexpression of the gene for tRNA4Leu restored the growth of group I mutants at 42°C. Replacement of the CUG codon with UUG reduced the efficiency of translation in group I mutants. These results suggest that unmodified tRNA4Leu poorly recognizes the UUG codon at 42°C and that the wild-type tRNA6Leu is required for translation in order to maintain cell viability. The mutations in the six group II mutants were complemented by introduction of the gidA gene, which may be involved in cell division. The reduced efficiency of translation caused by replacement of the CUG codon with UUG was also observed in group II mutants. The mechanism of requirement for tRNA6Leu remains to be investigated.In the universal genetic code, 61 sense codons correspond to 20 amino acids, and the various tRNA species mediate the flow of information from the genetic code to amino acid sequences. Since codon-anticodon interactions permit wobble pairing at the third position, 32 tRNAs, including tRNAfMet, should theoretically be sufficient for a complete translation system. Although some organisms have fewer tRNAs (1), most have abundant tRNA species and multiple copies of major tRNAs. For example, Escherichia coli has 86 genes for tRNA (79 genes identified in reference 14, 6 new ones reported in reference 3, and one fMet tRNA at positions 2945406 to 2945482) that encode 46 different amino acid acceptor species. Although abundant genes for tRNAs are probably required for efficient translation, the significance of the apparently nonessential tRNAs has not been examined.E. coli has five isoaccepting species of tRNALeu. According to the wobble rule, tRNA1Leu recognizes only the CUG codon. The CUG codon is also recognized by tRNA3Leu (tRNA2Leu) and thus tRNA1Leu may not be essential for protein synthesis. Similarly, tRNA6Leu is supposed to recognize only the UUG codon, but tRNA4Leu can recognize both UUA and UUG codons. Thus, tRNA6Leu appears to be dispensable. The existence of an amber suppressor mutation of tRNA6Leu (supP, Su+6) supports this possibility. tRNA6Leu is encoded by a single-copy gene, leuX (supP), and Su+6 has a mutation in the anticodon, which suggests loss of the ability to recognize UUG (26). Why are so many species of tRNALeu required? Holmes et al. (12) examined the utilization of the isoaccepting species of tRNALeu in protein synthesis and showed that utilization differs depending on the growth medium; in minimal medium, isoacceptors tRNA2Leu (cited as tRNA3Leu; see Materials and Methods) and tRNA4Leu are the predominant species that are found bound to ribosomes, but an increased relative level of tRNA1Leu is found bound to ribosomes in rich medium. The existence of tRNA6Leu is puzzling. This isoaccepting tRNA accounts for approximately 10% of the tRNALeu in total-cell extracts. However, little if any tRNA6Leu is found on ribosomes in vivo, and it is also only weakly active in protein synthesis in vitro with mRNA from E. coli (12). It thus appears that tRNA6Leu is only minimally involved in protein synthesis in E. coli.To investigate the role of tRNA6Leu in E. coli, we attempted to isolate tRNA6Leu-requiring mutants from an Su+6 strain. These mutants required wild-type tRNA6Leu for survival at a nonpermissive temperature. We report here the isolation and the characterization of these mutants.  相似文献   

12.
Carbon storage regulator A (CsrA) is an important regulator that controls central metabolic pathways and a variety of physiological functions. We found that disruption of csrA in cells containing the ColE7 operon caused a 12-fold increase in colicin E7 production. Moreover, real-time RT-PCR demonstrated a decrease of around 50 % in the lexA mRNA of the csrA mutant. However, the cellular level of RecA protein and its mRNA were not significantly different from the wild type strain. Our results suggest that a novel induction mechanism might exist in E. coli that allows the expression of ColE7 operon in response to a metabolic shift. Proteomic analysis suggested that csrA deficient mutant may adapt PEP-glyoxylate cycle for energy production. Thus, the physiological changes in the csrA mutant may be similar to carbon source limitation for initiating the expression of ColE7 operon in response to stringent environmental conditions.  相似文献   

13.
A mutant of Escherichia coli temperature-sensitive for deoxyribonucleic acid synthesis, dnaD, was found to have temperature-sensitive modification and restriction phenotypes. In contrast to the original observation by Carl (1970), the mutant could support the growth of λ phage at 41 C. However, the λ phages thus produced were able to form plaques with normal plating efficiency only on E. coli C, a restriction-less strain, but not on E. coli K. Since the λ phages produced in the mutant at 30 C could form plaques equally well on both E. coli strains, it was concluded that the dnaD mutant has a temperature-sensitive modification phenotype. Furthermore, since the dnaD mutant allowed some growth of unmodified λ·C phages at 41 C but less at 30 C, the mutant is also temperature sensitive in restriction. The relationship, if any, between temperature-sensitive deoxyribonucleic acid synthesis and temperature-sensitive modification-restriction in the dnaD mutant is not known. Similar experiments were done with three dnaC mutants and one dnaA mutant. Two dnaC mutants were found to have altered restriction phenotypes at 41 C, but none of the mutants were defective in modification.  相似文献   

14.
The thermostability of the penicillin-binding proteins (PBPs) of 31 temperature-sensitive cell division mutants of Escherichia coli has been examined. Two independent cell division mutants have been found that have highly thermolabile PBP3. Binding of [(14)C]benzylpenicillin to PBP3 (measured in envelopes prepared from cells grown at the permissive temperature) was about 30% of the normal level at 30 degrees C, and the ability to bind [(14)C]benzylpenicillin was rapidly lost on incubation at 42 degrees C. The other PBPs were normal in both mutants. At 30 degrees C both mutants were slightly longer than their parents and on shifting to 42 degrees C they ceased dividing, but cell mass and deoxyribonucleic acid synthesis continued and long filaments were formed. At 42 degrees C division slowly recommenced, but at 44 degrees C this did not occur. The inhibition of division at 42 degrees C was suppressed by 0.35 M sucrose, and in one of the mutants it was partially suppressed by 10 mM MgCl(2). PBP3 was not stabilized in vitro at 42 degrees C by these concentrations of sucrose or MgCl(2). Revertants that grew as normal rods at 42 degrees C regained both the normal level and the normal thermostability of PBP3. The results provide extremely strong evidence that the inactivation of PBP3 at 42 degrees C in the mutants is the cause of the inhibition of cell division at this temperature and identify PBP3 as an essential component of the process of cell division in E. coli. It is the inactivation of this protein by penicillins and cephalosporins that results in the inhibition of division characteristic of low concentrations of many of these antibiotics.  相似文献   

15.
Strain CRT 266, a polyauxotrophic dnaB temperature-sensitive mutant of Escherichia coli K, was investigated for residual deoxyribonucleic acid (DNA) synthesis when returned to the permissive temperature in the absence of protein synthesis. In the presence of methionine, a delayed extra-initiation occurs as well as an erratic long-lasting synthesis. In the absence of methionine, there is no evidence for extra-initiation, whereas the long-lasting synthesis is only slightly depressed. A direct role of methionine independent of protein synthesis in the extra-initiation process is postulated. The largest residual syntheses, with or without methionine, are obtained when (i) bacteria are first grown in a rich medium, (ii) bacteria are shifted to the nonpermissive temperature for 2 h in the same medium, and (iii) bacteria are then starved for aminoacid for 20 h at the permissive temperature. Under these conditions, DNA extracted from methionine-starved cells appears to be a mixture of half-methylated and unmethylated products. The possibility of the occurence of a few methyl groups on the so-called unmethylated DNA is discussed.  相似文献   

16.
A temperature-sensitive division mutant of Escherichia coli was isolated by using differential filtration to select for filaments at 42 C and normal cells at 30 C. Cells shifted from 30 to 42 C stop dividing almost immediately, suggesting the temperature-sensitive element is required for cell division late in the cell cycle. Cells returned to 30 from 42 C divide abruptly, suggesting accumulation of division potential at 42 C. Inhibitors of protein, deoxyribonucleic acid, and ribonucleic acid synthesis do not block division during the recovery period at 30 C. Cycloserine does not stop cell division, vancomycin shows some effect on cell division, whereas penicillin completely stops cell division during this period. The addition of high concentrations of NaCl to filaments at 42 C results in a burst of cell division. The final cell number is equivalent to the control which is grown at 30 C if sufficient salt is added (11 g/liter, final concentration). After the original burst, cell division ceases at the nonpermissive temperature even at increased osmolality. Chloramphenicol, puromycin, vancomycin, and penicillin prevent division during the recovery in the presence of NaCl. Kinetic data indicate division potential decays to a reversible inactive intermediate which rapidly decays to an irreversible inactive form. Conversion of division potential to the inactive form is correlated with a 100- to 1,000-fold derepression of the synthesis of division potential. The mutation appears to involve a stage in cross-wall synthesis which is required during the terminal stages of division.  相似文献   

17.
A temperature-sensitive mutation in Escherichia coli K-12 was shown to affect acetyl coenzyme A carboxylase and to map at min 63. This site is designated fabE.  相似文献   

18.
Recombinant thanatin analog (TH1) is a cationic 20-amino-acid antibacterial peptide with a conserved cysteine disulfide bond. It exhibits a broad antibacterial spectrum. Different strategies have been developed to produce small antibacterial peptides using recombinant techniques. To date, no efforts to obtain large quantities of active recombinant TH1 have been reported. This study describes the synthesis of TH1 gene, the heterologous fusion expression of the peptide in Escherichia coli, and the bioactive assay of released TH1. By constructing the expression plasmid (pET32a-TH1), high yields of soluble TH1 fusion protein (0.416 g/L) can be obtained in E. coli. Further optimization studies have been carried out to increase the expression of TH1 in different culture conditions, with the final amount of pure TH1 being 13.2 mg/L. The results show that the expression system provides a simple and reliable strategy for generating large quantities of TH1 by soluble fusion expression in E. coli.  相似文献   

19.
20.
一新富含甘氨酸果蝇抗菌肽在大肠杆菌中的优化表达   总被引:3,自引:0,他引:3  
目的:探索大肠杆菌原核表达系统制备具有生物功能的抗菌肽的最佳诱导条件。方法:将富甘氨酸果蝇抗菌肽基因的核心片段构建表达载体pET32a+中,经序列分析证实基因序列的正确性。在不同温度、不同时间和不同IPTG浓度进行诱导后,用15%SDS—PAGE检测融合蛋白的表达,发现有一条分子量约8kD的新增蛋白条带。结果:研究表明在37℃菌液OD值0.8时诱导7h蛋白表达量最高(IPTG0.7mmol/L,AMP100μg/ml,0.3%Glu)。结论:获得了抗菌肽表达的最佳诱导条件,为大量诱导产生该抗菌肽奠定了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号