首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A function of development is to put the right kind of cells in the right place at the right time. Other functional analyses help define what is right. As examples, functional analyses offer explanations for the unicellular bottleneck in life histories that necessitates embryos, evolutionary divergences in embryonic cell cycles, conditions permissive of loss of larval structures and consequent change in embryonic development, and the decoupled development of larval bodies and juvenile rudiments. Functional analyses also reveal the specifications required of morphogenesis, hence defining developmental phenomena to be explained.  相似文献   

2.
The data on comparative, experimental, and molecular embryology of ascidians (genus Molgula) published during the last 15 years have been reviewed. Some representatives of this genus evolved from development with a tailed larva (tadpole) to direct development associated with the loss of larval structures, such as tail, notochord, sensory organs, and differentiated muscles. The data on evolutionary reorganizations of ontogenesis in ascidians of the genus Molgula have been compared with those in sea urchins, anuran amphibians, and some other organisms.  相似文献   

3.
Animals exhibit an enormous diversity of life cycles and larval morphologies. The developmental basis for this diversity is not well understood. It is clear, however, that mechanisms of pattern formation in early embryos differ significantly among and within groups of animals. These differences show surprisingly little correlation with phylogenetic relationships; instead, many are correlated with ecological factors, such as changes in life histories.  相似文献   

4.
It is argued that larviparous development has evolved at least eight times among extant animals. A 'need for speed hypothesis' is proposed to explain profound convergence on a pattern of small larvae and rapid metamorphosis across six marine invertebrate clades. Shared selection pressures include limits to larval size, the plankton-to-benthos transition, extreme hazards on the benthos, and the profound helplessness of metamorphosing animals. The adaptive mechanisms include: (1) development of juvenile structures in larvae before they are metamorphically competent; (2) external cues trigger metamorphosis; and (3) rapid cell-to-cell conductance of the metamorphic signal to bring about rapid loss of larval structures and release of juvenile structures. Both pattern and mechanisms contrast in every regard with those of the other two major larviparous clades, Insecta and Amphibia.  相似文献   

5.
Summary

A vesicle which contains moderately electron-dense material has been found at the apex of mature spermatozoa in all representatives of three pleurogonan families: in Styela clava, Cnemidocarpa finmarkiensis and Botryllus schlosseri (family Styelidae), in Boltenia villosa and Herdmania momus (family Pyuridae), and in Molgula manhattensis (family Molgulidae). The vesicle described here resembles the acrosome of Ciona intestinalis spermatozoa. The Ciona acrosome shows structural changes at fertilization (Fukumoto, M., J. Ultrastruct. Res., 87 (1984) 252–262). This suggests that pleurogonan spermatozoa also have an acrosome. Some speculations are presented on ascidian fertilization.  相似文献   

6.
Ultrastructural analysis and differential immunocytochemical staining with two antitubulin monoclonal antibodies were used to reexamine the organization and development of the neural tube in the larva of an ascidian, Ciona intestinalis, in appraisal of a theory that the dorsal tubular nervous system of the chordates evolved from two halves of a ciliated band in an auricularia-like larva of the kind found in echinoderms and hemichordates. One of the antibodies stained cilia in the nervous system and elsewhere; the other reacted primarily with neuronal axons. The caudal neural tube consists of four rows of large ciliated ependymal-glial cells enclosing an axial neural canal into which their single cilia extend. Two ventrolateral nerve tracts, containing axons, arise in the posterior brain region and extend along the length of the caudal tube, partially surrounded by the ependymal cells. The nonnervous, ciliated, ependymal neural tube of the ascidian larva with its two associated nerve tracts survives as a primitive early condition that could result from a ciliated band transformation. Tissues in the distal-most part of the ascidian larval tail have cell lineage origins that indicate an evolutionary history different from those in the proximal majority of the tail. The ependymal cells in this presumed later addition to the tail are not ciliated, although all of the others in the caudal ependymal tube appear to be.  相似文献   

7.
The ascidian tadpole larva has two brain sensory organs containing melanocytes: the otolith, a gravity receptor, and the ocellus, part of a photoreceptor. One or both of these sensory organs are absent in molgulid ascidians. We show here that developmental changes leading to the loss of sensory pigment cells occur by different mechanisms in closely related molgulid species. Sensory pigment cells are formed through a bilateral determination pathway in which two or more precursor cells are specified as an equivalence group on each side of the embryo. The precursor cells subsequently converge at the midline after neurulation and undergo cell interactions that decide the fates of the otolith and ocellus. Molgula occidentalis and M. oculata, which exhibit a tadpole larva with an otolith but lacking an ocellus, have conserved the bilateral pigment cell determination pathway. Programmed cell death (PCD) is superimposed on this pathway late in development to eliminate the ocellus precursor and supernumerary pigment cells, which do not differentiate into either an otolith or ocellus. In contrast to molgulids with tadpole larvae, no pigment cell precursors are specified on either side of the M. occulta embryo, which forms a tailless (anural) larva lacking both sensory organs, suggesting that the bilateral pigment cell determination pathway has been lost. The bilateral pigment cell determination pathway and superimposed PCD can be restored in hybrids obtained by fertilizing M. occulta eggs with M. oculata sperm, indicating control by a zygotic process. We conclude that PCD plays an important role in the evolution and development of brain sensory organs in molgulid ascidians.  相似文献   

8.
Ascidians exhibit two different modes of development. A tadpole larva is formed during urodele development, whereas the larval phase is modified or absent during anural development. Anural development is restricted to a small number of species in one or possibly two ascidian families and is probably derived from ancestors with urodele development. Anural and urodele ascidians constitute a model system in which to study the evolution of development, but the phylogeny of anural development has not been resolved. Classification based on larval characters suggests that anural species are monophyletic, whereas classification according to adult morphology suggests they are polyphyletic. In the present study, we have inferred the origin of anural development using rDNA sequences. The central region of 18S rDNA and the hypervariable D2 loop of 28S rDNA were amplified from the genomic DNA of anural and urodele ascidian species by the polymerase chain reaction and sequenced. Phylogenetic trees inferred from 18S rDNA sequences of 21 species placed anural developers into two discrete groups corresponding to the Styelidae and Molgulidae, suggesting that anural development evolved independently in these families. Furthermore, the 18S rDNA trees inferred at least four independent origins of anural development in the family Molgulidae. Phylogenetic trees inferred from the D2 loop sequences of 13 molgulid species confirmed the 18S rDNA phylogeny. Anural development appears to have evolved rapidly because some anural species are placed as closely related sister groups to urodele species. The phylogeny inferred from rDNA sequences is consistent with molgulid systematics according to adult morphology and supports the polyphyletic origin of anural development in ascidians. Correspondence to: W.R. Jeffery  相似文献   

9.
The larval patterns of marine invertebrates pose intriguing questions for both evolutionary and developmental biologists. However, combined investigations have been rare. Quantitative models analyze the selective factors that drive evolutionary change in larval nutrition and timing of metamorphosis. Developmental studies describe the morphogenesis characterizing ancestral and derived larval patterns. Rigorous evolutionary analysis of the transition to derived modes of development is lacking and detailed developmental and ecological data are needed to test and refine theoretical models. A major challenge facing studies of life cycle evolution is the elucidation of the genetic structure and covariance of important developmental and larval traits.  相似文献   

10.
11.
Heat shock proteins (HSP) are a group of highly conserved proteins that regulate protein folding and ameliorate the effects of environmental stress. In the present study, the question of whether or not ascidian oocytes, embryos and larvae constitutively synthesize HSP was studied using HSP 60 and HSP 70 antibodies. Developmental stages obtained from Boltenia villosa, Cnemidocarpa finmarkiensis, Styela montereyensis and Corella willmeriana were examined for HSP using indirect immunocytochemistry. Myoplasm in oocytes and unfertilized eggs reacted with HSP 60 and 70 antibodies. HSP signals dramatically moved into the vegetal egg cytoplasm during ooplasmic segregation and colocalized with the myoplasm. In cleavage-stage embryos, HSP signals were partitioned with the myoplasm into muscle progenitor blastomeres and HSP signals were evident in the tail muscle cells of larvae. Immunoblots of proteins extracted from oocytes, eggs, embryos and larvae indicate that anti-HSP 60 recognizes a single band having an estimated molecular weight of 60 kDa. Egg centrifugation experiments suggest that most of the ascidian myoplasmic HSP are mitochondrial proteins. These results raise an intriguing possibility that mitochondria associated with the myoplasm perform biochemical functions that are unique to the embryonic muscle cell lineage.  相似文献   

12.
The neural crest has long been regarded as one of the key novelties in vertebrate evolutionary history. Indeed, the vertebrate characteristic of a finely patterned craniofacial structure is intimately related to the neural crest. It has been thought that protochordates lacked neural crest counterparts. However, recent identification and characterization of protochordate genes such as Pax3/7, Dlx and BMP family members challenge this idea, because their expression patterns suggest remarkable similarity between the vertebrate neural crest and the ascidian dorsal midline epidermis, which gives rise to both epidermal cells and sensory neurons. The present paper proposes that the neural crest is not a novel vertebrate cell population, but may have originated from the protochordate dorsal midline epidermis. Therefore, the evolution of the vertebrate neural crest should be reconsidered in terms of new cell properties such as pluripotency, delamination-migration and the carriage of an anteroposterior positional value, key innovations leading to development of the complex craniofacial structure in vertebrates. Molecular evolutionary events involved in the acquisitions of these new cell properties are also discussed. Genome duplications during early vertebrate evolution may have played an important role in allowing delamination of the neural crest cells. The new regulatory mechanism of Hox genes in the neural crest is postulated to have developed through the acquisition of new roles by coactivators involved in retinoic acid signaling.  相似文献   

13.
The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister‐group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid‐Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node‐based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as “all descendants of the most recent common ancestor of birds and Triceratops”. Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and Spondylosoma absconditum. The identification of dinosaur apomorphies is jeopardized by the incompleteness of skeletal remains attributed to most basal dinosauromorphs, the skulls and forelimbs of which are particularly poorly known. Nonetheless, Dinosauria can be diagnosed by a suite of derived traits, most of which are related to the anatomy of the pelvic girdle and limb. Some of these are connected to the acquisition of a fully erect bipedal gait, which has been traditionally suggested to represent a key adaptation that allowed, or even promoted, dinosaur radiation during Late Triassic times. Yet, contrary to the classical “competitive” models, dinosaurs did not gradually replace other terrestrial tetrapods over the Late Triassic. In fact, the radiation of the group comprises at least three landmark moments, separated by controversial (Carnian‐Norian, Triassic‐Jurassic) extinction events. These are mainly characterized by early diversification in Carnian times, a Norian increase in diversity and (especially) abundance, and the occupation of new niches from the Early Jurassic onwards. Dinosaurs arose from fully bipedal ancestors, the diet of which may have been carnivorous or omnivorous. Whereas the oldest dinosaurs were geographically restricted to south Pangea, including rare ornithischians and more abundant basal members of the saurischian lineage, the group achieved a nearly global distribution by the latest Triassic, especially with the radiation of saurischian groups such as “prosauropods” and coelophysoids.  相似文献   

14.
Over the last 50 yrs seven non-native ascidians have settled in The Netherlands, concentrated in the two periods 1974-1977 and 1991-2004 (i.e., Styela clava, Aplidium glabrum, Diplosoma listerianum, Didemnum sp., Botrylloides violaceus, Molgula complanata and Perophora japonica). The year of the introduction of B. violaceus remains a matter of dispute because many of the Botrylloides specimens that are recorded in western Europe, have been identified as the closely resembling species B. leachi. Only Didemnum sp. has become a true invasive species and has become a threat to native ecosystems, especially in the province of Zeeland, by its ability to overgrow virtually all hard substrata present. This includes rocks, stones, sand, algae and almost all sessile marine animals. The sudden population expansion of the didemnid from 1996 onward, coincided with the cold winter of 1995-1996, which caused decreased population sizes of many marine animals. The resulting increase in the availability of suitable substrates for settlement and the strong decrease of grazing sea urchins, may have triggered the population expansion. Studying its population dynamics, the optimal growing temperature for Didemnum sp. appears to be 14-18 °C. Virtually all colonies die when the water temperature gets colder than 5 °C. Colonies growing on live marine animals seem to be more resistant to the cold, than those growing on rocks, stones and plants. Two potential predators of the didemnid have also been recorded in Dutch waters: the gastropods Trivia arctica and Lamellaria sp.  相似文献   

15.
陈庆霄  花保祯 《昆虫学报》2016,(10):1133-1142
【目的】长翅目(Mecoptera)是全变态类昆虫中唯一在幼虫期具有复眼而无侧单眼的类群,是研究昆虫复眼与侧单眼之间演化关系的理想材料。本研究旨在阐明长翅目幼虫复眼的结构特征,为探讨长翅目幼虫复眼与其他全变态类幼虫侧单眼之间的进化关系提供依据。【方法】本研究运用光学显微镜、扫描和透射电子显微镜技术观察了蝎蛉科(Panorpidae)大双角蝎蛉Dicerapanorpa magna(Chou)幼虫复眼的超微结构,并依据其结构特征对长翅目幼虫复眼在全变态类幼虫侧单眼演化中的意义进行了探讨。【结果】结果表明,大双角蝎蛉幼虫复眼属于并列像眼,由50多个小眼组成。小眼由1个角膜、1个晶体、8个视网膜细胞、2个初级色素细胞和数个次级色素细胞等组成。视网膜细胞分为4个远端细胞和4个近端细胞。远端视网膜细胞的视小杆向上延伸包裹着晶体的基部,使视杆末端呈漏斗状。【结论】分层的视网膜细胞和漏斗状的视杆很可能是长翅目幼虫复眼的共有祖征。这两个特征不存在于长翅目成虫复眼中,但存在于许多渐变态类昆虫中。由此推测,长翅目幼虫复眼可能与渐变态类昆虫的复眼存在同源关系。我们认为,长翅目幼虫独有的复眼很可能是全变态类昆虫的祖征,其他全变态类幼虫的侧单眼可能是由复眼演化来的。  相似文献   

16.
Nick Aldred 《Biofouling》2014,30(3):259-270
Globally, ascidians are a significant contributor to benthic marine fouling communities, but have remained poorly studied in this context. In some cases, such as in shellfish and finfish aquaculture, ascidians are the most problematic of all fouling organisms. The disproportionate impact of ascidian fouling in some specific geographic locations has been related directly to anthropogenic translocation of these organisms around the globe. In the case of ascidians, therefore, the economic issue of biofouling and the ecological ramifications of invasion are inextricably linked. This mini-review briefly discusses the introduction of non-native ascidians to areas where they have subsequently proven to be a significant fouling pest. The elements of ascidian reproductive ecology that support their aggressive fouling character are discussed and the scant information pertaining to their adhesion and adhesives is presented. Finally, strategies for mitigating ascidian fouling are examined. It is suggested that sufficient working knowledge currently exists to support the inclusion of one or more common ascidian species as ‘standard’ test organisms used for evaluation of novel fouling-resistant surfaces.  相似文献   

17.
18.
The three extant Divisions comprising the bryophytes extend, as fossils, well back into Palaeozoic time. Bryophyte origin is part of the rise of terrestrial, vascularized, plants with sporopollenin-walled spores in the Silurian. Before the end of Carboniferous time, bryophyte lines were widely present. Separation of Gondwana and Laurasia by the Permian Tethys Sea and subsequent widespread desert episodes fragmented an already diversified bryoflora subjecting it to intense selective pressure. The cool, mesic climate of southern Gondwana provided a refugium for austral bryophytes. Warmer and drier climates of the Permo-Triassic Laurentian-Laurasia favoured drought-adapted or niche-specific groups creating marked systematic discontinuities. The Angaran wet, probably cool, temperate region provided refuge for basic stock for much of today's rich holarctic and wet ‘tropical’ bryofloras. Climatic changes, correlated with tectonic events and the rise of angiosperms, opened habitats favourable for a diversity explosion. Despite demonstrated potential for long-distance dispersal, modern distributions are mostly linked with total floras or establishment on islands prior to niche saturation. Remnants of Gondwanan bryoflora persist in high southern latitudes as disjunctions with the possibility that the folded ranges of the African Cape have been an insular fragment at higher latitudes becoming attached shortly after angiosperm diversification. Floras of southern India and east Africa have common features but the Himalayan flora shows evidence that the Gondwanan flora of the Indian plate was lost during the movement through desert and tropical latitudes; neotropical and palaeotropical floras are distinctive. Much of the northern Australian bryoflora is recently Malesian-derived while the southeast shows strong austral influence and commonality with New Zealand. Tropical Pacific island floras are mostly Malesian-derived but with both holarctic and austral elements present as in Hawaii and the Society Islands. Holarctic bryoflora is circum-polar with temperate areas of Euro-American and far eastern elements floristically bound by disjunct and vicariad species. Kroeber Coefficients of Correlation differ as Pacific island floras are compared and Guttman-Lingoes Smallest Space Coordinates indicates floristic subgroups within Polynesia. Although these and other mathematical treatments yield potentially promising results, the methods are yet unrefined and there is some uncertainty whether characteristics of numbers or of organisms are implicit in the summations.  相似文献   

19.
The evolution of larval morphology and swimming performance in ascidians   总被引:1,自引:0,他引:1  
The complexity of organismal function challenges our ability to understand the evolution of animal locomotion. To meet this challenge, we used a combination of biomechanics, phylogenetic comparative analyses, and theoretical morphology to examine evolutionary changes in body shape and how those changes affected swimming performance in ascidian larvae. Results of phylogenetic comparative analyses suggest that coloniality evolved at least three times among ascidians and that colonial species have a convergent larval morphology characterized by a large trunk volume and shorter tail length in proportion to the trunk. To explore the functional significance of this evolutionary change, we first verified the accuracy of a mathematical model of swimming biomechanics in a solitary (C. intestinalis) and a colonial (D. occidentalis) species and then ran numerous simulations of the model that varied in tail length and trunk volume. The results of these simulations were used to construct landscapes of speed and cost of transport predictions within a trunk volume/tail length morphospace. Our results suggest that the reduction of proportionate tail length in colonial species resulted in improved energetic economy of swimming. The increase in the size of larvae with the origin of coloniality facilitated faster swimming with negligible energetic cost, but may have required a reduction in adult fecundity. Therefore, the evolution of ascidians appears to be influenced by a trade-off between the fecundity of the adult stage and the swimming performance of larvae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号