首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucor dimorphism.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

2.
3.
A study has been made of some chemical and ultrastructural changes that occur in the hyphal, arthrospore and sporangiospore walls ofMucor ramannianus during lysis by a soil streptomycete.Arthrospore and hyphal walls, which were shown to contain chitin, chitosan, other polysaccharides and phosphate (principally as polyphosphate), were lysed by culture fluid of the streptomycete after this organism had been grown on the same material. Alcohol-insoluble material found in the supernatants of the incubation mixtures gave on hydrolysis glucosamine, galactose, mannose and fucose. No laminarinase activity was detected in these culture fluids. Culture fluids of the streptomycete after growth on chitin and chitosan were also found to lyse the walls of arthrospores and hyphae.Despite the chemical similarities the walls were very different in thin section.A major component in the sporangiospore walls was glucan and an active laminarinase was shown to be present in the culture fluids of the streptomycete after growth on them. Further, ultrathin sections showed that an inner fibrillar layer of the sporangiospore wall was lysed leaving an outer electron-dense layer.  相似文献   

4.
Galleria mellonella apolipophorin III (apoLp-III) has been implicated in the innate immune response against bacterial infections. The protein binds components of bacterial cell wall and inhibits growth of selected Gram-positive and Gram-negative bacteria. Interaction of apoLp-III with fungal β-1,3-glucan suggests antifungal properties of the protein. In the present study, the effect of apoLp-III on the growth, metabolic activity and cell surface characteristics of selected yeasts and filamentous fungi was investigated using light, confocal and atomic force microscopy. ApoLp-III bound to the cell surface of different yeasts and filamentous fungi as confirmed by immunoblotting with anti-apoLp-III antibodies. Incubation of the fungi in the presence of apoLp-III induced alterations in growth morphology. Candida albicans underwent transition from yeast-like to hyphal growth with formation of true hyphae, whereas Fusarium oxysporum hyphae exhibited decreased metabolic activity, increased vacuolization and appearance of numerous monophialids with microconidia. Atomic force microscopy imaging demonstrated evident alterations in the fungal cell surface after incubation with apoLp-III, suggesting that the protein affected the cell wall components.  相似文献   

5.
The regulation of Ace2 and morphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae, we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Pneumocystis spp.  相似文献   

6.
The present study demonstrates the importance of mitochondrial activities in controlling Mucor rouxii morphogenesis. The respiratory capacity of the spores of this facultatively anaerobic, dimorphic fungus becomes repressed if germination and growth take place in the absence of oxygen. The level of activity of mitochondrial enzymes such as cytochrome oxidase and malate dehydrogenase is lower in the anaerobic yeastlike cells than it is in ungerminated spores and in aerobic hyphae, but the reverse is true for glycolytic enzymes such as pyruvate kinase and alcohol dehydrogenase. Following exposure to air, yeastlike cells convert into hyphae after a lag period corresponding to aerobic adaptation. Anaerobic cultures grown in the presence of ethylenediaminetetraacetate (EDTA) at a concentration of 10(-4) M exhibit hyphal morphology. These cells, which are fully adapted to anaerobic fermentation, nevertheless have potentially active mitochondria with the same levels of respiratory enzymes as ungerminated spores. These cells are able to grow immediately after aeration, without an adaptation lag. Evidence is presented which indicates that the morphogenetic effect of EDTA is not the result of elimination of free metals. Additional evidence proving mitochondrial control of morphogenesis in M. rouxii is that chloramphenicol (4 mg/ml) induced the formation of respiratory-deficient, yeastlike cells in aerobic cultures.  相似文献   

7.
8.
The in vivo differential rates of chitin-plus-chitosan biosynthesis in Mucor racemosus were determined under a variety of conditions, leading to yeast cell or mycelial morphology. Chitin-chitosan was determined as hot NaOH-insoluble radioactivity derived from N-acetyl-D-[1-3H]glucosamine in the medium. Control experiments demonstrated that the labeled material possessed the properties of chitin-plus-chitosan. Our results indicate that Mucor yeasts have a relatively low differential rate of chitin-plus-chitosan synthesis and that mycelial cells have a threefold-elevated differential rate. Treatment of aerobic cells with exogenous N6, O2-dibutyryl cyclic adenosine 3',5'-monophosphate, an agent which induces yeast cell morphology, also results in a lowered rate of chitin-plus-chitosan synthesis. Control experiments eliminated the possibility that the observed rate changes were due to changes in endogenous pool size, uptake of exogenous N-acetyl-p-[1-3H]glucosamine, or alterations in growth rate. Therefore, the changes are seemingly linked to morphogenesis. These results strengthen the idea that cyclic adenosine 3',5'-monophosphate plays an important role in dimorphism in Mucor. In addition, pulse-chase experiments suggest that considerable modification of newly synthesized chitin plus chitosan in both yeast cells and mycelia occurs in vivo.  相似文献   

9.
Effect of L-amino acids on Mucor rouxii dimorphism.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mucor rouxii organisms growing aerobically and exponentially on a well-defined minimal medium are able to differentiate as yeasts or as mycelia, depending on the amino acid as the nitrogen source. When certain amino acids were used as the nitrogen source, spores differentiated only as hyphae, whereas other amino acids gave rise to other morphological forms having different ratios of yeasts to hyphae. In both hyphal and yeast cultures, an aerobic metabolism was predominant, as shown by determining several metabolic parameters such as oxygen tension, glucose consumption, ethanol production, and CO2 release. A complete conversion of yeasts to hyphae was obtained by the appropriate change in the amino acid used as nitrogen source. By preparing spheroplasts from mycelial cultures and transferring them to media with amino acids that induce yeast formation, a 50% yield in the reverse transformation was achieved. A correlation between the change in pH of the medium and cell morphology was observed in different growth conditions. Decrease in the pH of the medium preceded the appearance of hyphae. Also, when the initial pH of the medium was increased, aspartate-containing cultures developed mainly as mycelia, instead of yeasts, with a corresponding decrease in the final pH.  相似文献   

10.
Lipid synthesis during morphogenesis of Mucor racemosus.   总被引:3,自引:0,他引:3       下载免费PDF全文
Lipid synthesis increases coordinately with protein and RNA synthesis during morphogenesis of Mucor racemosus. The lipid synthesis inhibitor cerulenin can completely block morphogenesis under conditions in which cell growth continues. An increase in phospholipid turnover may be an important correlate to morphogenesis of Mucor spp., especially the turnover of phosphotidyl inositol and phosphatidyl ethanolamine. The increase in ornithine decarboxylase, which occurs during morphogenesis, is inhibited by the addition of cerulenin.  相似文献   

11.
The fungal kingdom is extremely diverse – comprised of over 1.5 million species including yeasts, molds and mushrooms. Essentially, all fungi have cell walls that contain chitin and the cells of most fungi grow as tube-like filaments called hyphae. These filamentous fungi, such as the mold Neurospora crassa, develop branched radial networks of hyphae referred to as mycelium. In contrast, non-filamentous fungi do not form radial mycelia, but grow as single cells, which reproduce by either budding or fission such as Saccharomyces cerevisiae or Schizosaccharomyces pombe, respectively. Finally, there are fungi that are capable of switching between single cell, yeast form growth and filamentous growth such as Candida albicans. The switch from yeast to filamentous growth in these so-called dimorphic fungi is a virulence trait in many human and plant pathogens. Highly conserved master regulators of all three fungal growth modes – filamentous, non-filamentous and dimorphic – are the Ras and Rho small GTPases, which spatially and temporally control cell polarity establishment and maintenance. This review summarizes the key roles of the Ras and Rho GTPases during hyphal morphogenesis in a range of fungi.  相似文献   

12.
Polarized growth, secretion of exoenzymes, organelle inheritance, and organelle positioning require vectorial transport along cytoskeletal elements. The discovery of molecular motors and intensive studies on their biological function during the past 3 years confirmed a central role of these mechanoenzymes in morphogenesis and development of yeasts and filamentous fungi. Saccharomyces cerevisiae proved to be an excellent model system, in which the complete set of molecular motors is presumed to be known. Genetic studies combined with cell biological methods revealed unexpected functional relationships between these motors and has greatly improved our understanding of nuclear migration, exocytosis, and endocytosis in yeasts. Tip growth of elongated hyphae, compared to budding, however, does require vectorial transport over long distances. The identification of ubiquitous motors that are not present in yeast indicates that studies on filamentous fungi might be helpful to elucidate the role of motors in long-distance organelle transport within higher eukaryotic cells. Copyright 1998 Academic Press.  相似文献   

13.
THE MORPHOGENESIS AND POSSIBLE EVOLUTIONARY ORIGINS OF FUNGAL SCLEROTIA   总被引:2,自引:0,他引:2  
1. Fungal sclerotia are able to survive adverse conditions for long periods and they are formed by many important plant pathogens. An understanding of the factors involved in their initiation and development may lead to a method of repressing their formation in nature, thereby reducing the chances of survival of fungi that depend on them as persistent resting stages in their life-cycles. Also, data on sclerotial morphogenesis may be applicable to other multihyphal fungal structures. 2. There are three types of sclerotial development. The most primitive and least common is the loose type, which is illustrated by Rhizoctonia solani. The sclerotium forms by irregular branching of the mycelium followed by intercalary septation and hyphal swelling. When mature, it consists of loosely interwoven hyphae that are rich in food reserves and darkly pigmented. The main types of development are terminal and lateral. The former develops from the coalescence of initials that are produced by a well-defined pattern of branching at the tip of a hypha or tips of closely associated hyphae, e.g. Botrytis cinerea. Lateral sclerotia are formed by the interweaving of side branches of one or several main hyphae. When only one main hypha is involved the sclerotium is of the lateral, simple type, e.g. Sclerotinia gladioli. If several main hyphae give rise to a sclerotium, the term strand type has been used. Sclerotium rolfsii is the classical example. 3. There is a considerable literature on the effects of environmental conditions on the initiation, development and maturation of sclerotia but few attempts have been made to interpret the data. Phenolics and/or polyphenol oxidases have been found to be connected with morphogenesis of the protoperithecium of Neurospora crassa, the perithecium of Podospora anserina and of Hypomyces sp. and the basidiocarp of Schixophyllum commune. A close correlation has been shown between melanin synthesis and microsclerotial development by Verticillium but there appears to be no literature on the role of phenolics and polyphenol oxidases in the morphogenesis of sclerotia. Possibly these substances may inhibit growth of the apices of main hyphae by changing the permeability of the membrane, by inducing a thickening of the cell wall at the tip or by reducing the plasticity of the wall. Such a check in growth could trigger-off the formation of initials close to the margin of the colony or elsewhere in the culture. Sulphydryl groups and disulphide bonds are of great significance in morphogenesis of organisms and are probably involved in sclerotial initiation. The formation of a large number of hyphal branches is a prerequisite for sclerotial initiation and mycelial branching is possible only if there is plasticity of hyphal walls. The ability of the wall to be moulded is possibly related to changes in the sulphur linkages of the protein of the protein-carbohydrate complexes of the cell wall and could be influenced by sulphur availability or the activity of specific enzymes. 4. After a sclerotial primordium has been initiated, further increase in size will depend on the continued, active translocation of nutrients to the site of development. Movement of nutrients to sclerotia is through a few translocatory hyphae. Presumably, nutrients will continue to move into the young sclerotium as long as a concentration or pressure gradient is maintained. Energy and substances for the formation of new branches are supplied in this way and as the requirements for hyphal branches are reduced, excess nutrients become available for conversion to inactive or insoluble reserves and for exudation. The exudates are often complex, consisting of proteins, including enzymes, lipids and carbohydrates. Many sclerotia have a mucilaginous matrix in which the medullary hyphae are embedded. Sclerotium-forming, fungal species that are not regarded as having such a matrix appear to secrete a layer of mucilage over the surface of sclerotial hyphae. This mucilage could have a morphogenetic function and serve as an adhesive which loosely binds hyphae together. More permanent unions are by hyphal fusions or anastomoses. 5. The sclerotium matures within a few days of attaining its maximum size. The rind effectively seals off the medullary hyphae from the surroundings and the translocatory hyphae cease to function. Thus the sclerotium is isolated both physiologically and nutritionally. The endogenous reserves enable the structure to exist in the absence of exogenous nutrients and then, when conditions become suitable, to germinate. 6. The sclerotium appears to provide an example of convergent evolution whereby analogous structures, which have become adapted to resist adverse conditions, have evolved. Data are available mainly for Typhula spp. and ScZerotinia spp. Sclerotia may be degenerate sexual reproductive structures, hyphal aggregates that have developed from closely interwoven conidiophores and undifferentiated conidia or they may be modified vegetative structures.  相似文献   

14.
Abstract: There has been a considerable amount of recent research aimed at elucidating the roles of chitinase in fungi and plants. In filamentous fungi and yeasts, chitinase is involved integrally in cell wall morphogenesis. Chitinase is also involved in the early events of host-parasite interactions of biotrophic and necrotrophic mycoparasites, entomopathogenic fungi and vesicular arbuscular mycorrhizal fungi. In plants, induction of chitinase and other hydrolytic enzymes is one of a coordinated, often complex and multifaceted defense mechanism triggered in response to phytopathogen attack. Chitinase induction in plants is not considered solely as an antifungal resistance mechanism. Plant chitinases can be induced by various abiotic factors as well and there is some circumstantial evidence to suggest a morphogenetic role despite the apparent absence of the substrate in plant cells. Finally, some chitinases and other chitin-binding proteins including some plant lectins share chitin-binding domains as part of their molecular structure and provide fuel for the so-called 'lectin-chitinase' debate and speculation for the origin of chitinase in plants.  相似文献   

15.
介绍了1种快速测定遗址木构件有害真菌的方法:用孢子菌丝悬浮液直接接种于供试木块上,培养4d,即可确定其侵染性;培养8d,即可确定其侵染力。应用该方法成功地测定了灰绿曲霉(Aspergillus glau-cus)、黑曲霉(Aspergillus niger)、枝孢霉(Cladosporiumsp.)、顶青霉(Penicillium corylophilum)、柑桔青霉(Penicilliumcitrinum)、团青霉(Penicillium commune)、黄曲霉(Aspergillus flavus)、微紫青霉(Penicilliumjanthinellum)、总状毛霉(Mucor racemosus)、绿木霉(Trichoderma viride)等10种真菌的侵染性和侵染力。  相似文献   

16.
17.
Populations of aerobic heterotrophic bacteria, mycelial fungi and yeasts occurring in malting barley were estimated by a plate technique and scanning electron microscopy. There was an increase in the total number of micro-organisms during germination, although populations declined after kilning. Bacteria dominated on all samples, with progressively lower populations of yeasts and filamentous fungi. There was no obvious spatial distribution of micro-organisms on the samples although there appeared to be high populations of bacteria and fungal hyphae on the inner surface of the kernels. The dominant groups of aerobic heterotrophic bacteria were presumptively identified as Alcaligenes sp., Arthrobacter globiformis, Clavibacter iranicum, Erwinia herbicola, Lactobacillus spp. and Pseudomonas fluorescens. The principal filamentous fungi were identified as Aiternaria alternata, Aspergillus glaucus (group), Cladosporium macrocarpum, Epicoccum purpurascens, Fusarium avenaceum, Geotrichum candidum and Penicillium spp. The yeasts isolated most frequently were Candida catenulata, C. vini, Debaryomyces hansenii, Hansenula polymorpha, Kloeckera apiculata, Rhodotorula mucilaginosa, Sporobolomyces roseus and Trichosporon beigelii.  相似文献   

18.
The intracellular concentration of S-adenosylmethionine (SAM) and the specific activity of S-adenosylmethionine synthetase (ATP:l-methionine S-adenosyltransferase, EC 2.5.1.6) were examined in wild-typeMucor racemosus, as well as a morphological mutant termedcoy, under conditions designed to prevent the morphogenesis of yeasts to hyphae. When the mutant was grown in a defined medium supplemented with methionine and induced to shift by exposure to air, there was an increase in intracellular SAM analogous to that previously reported with the wild type. However, when thecoy mutant was grown in the absence of methionine, the intracellular concentration decreased dramatically and the mutant failed to undergo the yeast to hypha transition. An inhibitor of SAM synthetase activity, cycloserine, was used to lower the intracellular concentration of SAM in the wild-type organisms. Under these conditions, wild-typeM. racemosus failed to undergo the transition from yeasts to hyphae when exposed to air.  相似文献   

19.
Filamentous fungi grow by the polar extension of hyphae. This polar growth requires the specification of sites of germ tube or branch emergence, followed by the recruitment of the morphogenetic machinery to those sites for localized cell wall deposition. Researchers attempting to understand hyphal morphogenesis have relied upon the powerful paradigm of bud emergence in the yeast Saccharomyces cerevisiae. The yeast paradigm has provided a useful framework, however several features of hyphal morphogenesis, such as the ability to maintain multiple axes of polarity and an extremely rapid extension rate, cannot be explained by simple extrapolation from yeast models. We discuss recent polarity research from filamentous fungi focusing on the position of germ tube emergence, the relaying of positional information via RhoGTPase modules, and the recruitment of morphogenetic machinery components including cytoskeleton, polarisome and ARP2/3 complexes, and the vesicle trafficking system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号