首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apoptosis was observed in the initial leaf of 5-8-day-old etiolated wheat seedlings. A condensation of cytoplasm in apoptotic cells, formation of myelin-like structures, specific fragmentation of cytoplasm, appearance in vacuoles of specific vesicles containing subcellular organelles, condensation and margination of chromatin in the nucleus, and internucleosomal fragmentation of nuclear DNA are ultrastructural features of apoptosis in the initial wheat leaf. Single-membrane vesicles detected in vacuoles of the leaf cells resemble in appearance the vacuolar vesicles in the coleoptile apoptotic cells described earlier (Bakeeva, L. E., et al. (1999) FEBS Lett., 457, 122-125); they contain preferentially plastids but not mitochondria as was observed in coleoptile. The vacuolar vesicles are specific for the apoptotic plant cells. Thus, apoptosis in various tissues is an obligatory element of plant (wheat) growth and development even in the early stages of ontogenesis. Contrary to strong geroprotecting action in coleoptile, the known antioxidant BHT (ionol, 2.27·10–4 M) does not prevent in the leaf cells the apoptotic internucleosomal DNA fragmentation and appearance of specific vacuolar vesicles containing subcellular organelles. Therefore, the antioxidant action on apoptosis in plants is tissue specific. Peroxides (H2O2, cumene hydroperoxide) stimulated apoptosis (internucleosomal DNA fragmentation) in coleoptile and induced it in an initial leaf when apoptosis in a control seedling leaf was not yet detected. Thus, apoptosis that is programmed in plant ontogenesis and controlled by reactive oxygen species (ROS) can be modulated by anti- and prooxidants.  相似文献   

2.
The CuZn superoxide dismutase (SOD1), a member of a group of isoenzymes involved in the scavenger of superoxide anions, is a dimeric carbohydrate free protein, mainly localized in the cytosol. The reactive oxygen species (ROS) are involved in many pathophysiological events correlated with mutagenesis, cancer, degenerative processes and aging. In the first part of this mini-review the well known role of SOD1 and ROS are briefly summarized. Following, a potential novel biological action that SOD1 could exert is described, based on the recent researches demonstrating the secretion of this enzyme in many cellular lines. Moreover, the role of impaired mutant SOD1 secretion, associated with cytoplasmic toxic inclusion, which occurs in familial amyotrophic lateral sclerosis (ALS), is summarized. In addition, a depolarization-dependent release of SOD1 in pituitary GH3 cells and in rat synaptosomes through a calcium and SNARE-dependent mechanism is reported.  相似文献   

3.
The bioluminescent oxygen metabolite indicator protein pholasin was characterized with respect to the type and location of reactive oxygen metabolites detected in suspensions of stimulated human neutrophils. Whereas pholasin detected reactive oxygen metabolites from neutrophil suspensions stimulated with soluble agents, particulate stimulants were apparently not effective triggering agents for pholasin-dependent neutrophil chemiluminescence. Neutrophils stimulated with fMet-Leu-Phe (1 to 100 nmol/l) showed maximum pholasin-dependent chemiluminescence 45 to 60s after stimulation. The time of maximum chemiluminescence was virtually independent of fMet-Leu-Phe concentration. In contrast, the time to reach maximum light emission increased from 60s with 100 nmol/l phorbol ester to 295s with 1 nmol/l phorbol ester. Significant inhibition of stimulated chemiluminescence was caused by both superoxide dismutase (20 μg/ml, 80% inhibition) and reduction of the oxygen concentration in the incubation medium to less than 0.5 μmol/l (95% inhibition). In contrast, the myeloperoxidase inhibitor sodium azide (0.1 nmol/l) afforded only 50% inhibition of the pholasin-dependent neutrophil chemiluminescence. Our results show that pholasin detects superoxide radicals released from cells stimulated by soluble stimulants but not intracellular oxidative activity elicited by particulate stimulants.  相似文献   

4.
Moderate cell growth occurred after a long lag phase of about 100 hr when oxygen-sensitive hydrogen bacterium N34 was cultivated chemoautotrophically under 40% O2. A decrease in cell growth or viable count was not observed during the lag phase. These cells grown under 40 % O2 were oxygen-resistant because when used as inocula for fresh 40 % O2-culture, the growth lag period was less than 10 hr. Nine oxygen-sensitive colonies developed from a single oxygen-sensitive cell respectively. When these colonies were inoculated into 40% O2-culture, they showed an almost equal lag period and growth rate. These results suggest that cell growth in 40% O2-culture inoculated with oxygen-sensitive strain N34 occurred not by selection of oxygen-resistant variants which might preexist but by adaptation of very oxygen-sensitive cells to high oxygen tension. Oxygen-resistance thus developed was maintained after successive subcultures under 10% O2 for more than one year.  相似文献   

5.
6.
《Free radical research》2013,47(5):550-558
Abstract

Reactive oxygen species (ROS) are involved in both bone and cartilage physiology and play an important role in the pathogenesis of osteoporosis and osteoarthritis. The present study investigated the effect of running exercise on bone and cartilage in heterozygous manganese superoxide dismutase (SOD2)-deficient mice. It was hypothesized that exercise might induce an increased production of ROS in these tissues. Heterozygous SOD2-deficient mice should exhibit an impaired capability to compensate, resulting in an increased oxidative stress in cartilage and bone. Thirteen female wild type and 20 SOD2+/? mice (aged 16 weeks) were randomly assigned to a non-active wild type (SOD2+/+Con, n = 7), a trained wild type (SOD2+/+Run, n = 6), a non-active SOD2+/? (SOD2+/?Con, n = 9) and a trained SOD2+/? (SOD2+/?Run, n = 11) group. Training groups underwent running exercise on a treadmill for 8 weeks. In SOD2+/? mice elevated levels of 15-F2t-isoprostane and nitrotyrosine were detected in bone and articular cartilage compared to wild type littermates. In osteocytes the elevated levels of these molecules were found to be reduced after exercise while in chondrocytes they were increased by aerobic running exercise. The observed changes in oxidative and nitrosative stress did neither affect morphological, structural nor mechanical properties of both tissues. These results demonstrate that exercise might protect bone against oxidative stress in heterozygous SOD2-deficient mice.  相似文献   

7.
The in vitro antioxidant effects of novel N-substituted indole-3-carboxamides (I3CDs) 1-10 on rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels and their free radicals scavenging properties were determined by the inhibition of superoxide anion formation (SOD). Among the synthesized compounds, 4, 5, 8 and 9 significantly inhibited SOD with an inhibition range at 84–100% at 10? 3 M concentration. The presence of halo substituents both ortho- and para- positions of these compounds resulted 100% inhibition of SOD. Comparison the activity results of halogenated and non-halogenated derivatives suggested that the halogenated compounds are more active than the non-halogenated compounds. On the other hand, the introduction of a para fluoro benzyl in the 1-position of indole (compounds 7, 8) has more impact on the SOD inhibition when the benzamide ring was mono halogenated. However, none of other compounds had a significant inhibitory effects on the level of lipid peroxidation.  相似文献   

8.
9.
We investigated the possible existence of superoxide dismutase (SOD; EC 1.15.1.1) isoenzymes in the pollen of Nicotiana tabacum (Petit Havana SR-1 cultivar). To detect SOD activity, crude extracts from tobacco pollen were subjected to native polyacrylamide gel electrophoresis followed by staining with nitroblue tetra-zolium (NBT). The presence of six SOD isoenzymes was detected in tobacco pollen. Treatment with SOD inhibitors indicated the presence of one manganese SOD (Mn SOD), five copper-zinc SOD (Cu/Zn SOD) isoenzymes, and the absence of iron SOD (Fe SOD).  相似文献   

10.
The plasma and erythrocyte levels of zinc, copper, and magnesium and the activities of red-cell copper-zinc superoxide dismutase (Cu/Zn-SOD) and catalase (CAT) were determined in patients with benign and malignant tumors of the larynx. Blood samples from patients and healthy controls were drawn using heparinized tubes. The erythrocyte Cu/Zn-SOD and CAT activities were determined spectrophotometrically and the zinc, copper, and magnesium concentrations were determined in erythrocyte and plasma by atomic absorption spectrometry. Variance analysis was employed in the statistical evaluation of the findings. There was a significant increase in red-cell Cu/Zn-SOD activity in the subjects with malignant and benign tumors compared to controls (p<0.001). The CAT activity increased only in the benign tumor group (p<0.01). The plasma zinc concentrations were significantly lower in the malignant tumor group (p<0.05) and significantly higher in the benign tumor group (p<0.01). The erythrocyte copper concentrations were significantly lower in both benign and malignant tumor groups (p<0.001). The plasma copper and magnesium and the erythrocyte magnesium concentrations did not show significant differences relative to controls (p>0.05). The increases in the activities of SOD and CAT activities and the changes in trace elements concentrations can indicate the presence of increased reactive oxygen species that might play a part in the pathogenesis larynx tumors. Presented at the IX Asian-Pacific Congress of Clinical Biochemistry, March 9–14, 2002, New Delhi, India.  相似文献   

11.
Abstract

Superoxide radical represents one of the most biologically relevant reactive oxygen species involved in numerous physiological and pathophysiological processes. Superoxide measurement through the decay of an electron paramagnetic resonance (EPR) signal of a triarylmethyl (TAM) radical possesses the advantage of a high selectivity and relatively high rate constant of TAM reaction with the superoxide. Hereby we report a straightforward synthesis and characterization of a TAM–TAM biradical showing a high reactivity with superoxide (second-order rate constant, (6.7?±?0.2)?×?103 M?1 s?1) enabling the measurement of superoxide radical by following the increase of a sharp EPR signal associated with the formation of a TAM-quinone-methide monoradical product.  相似文献   

12.
It was established that total proteolytic activity in etiolated wheat seedlings changes in ontogenesis in cycles: peaks of proteolytic activity correspond to the 3rd, 5th, and 8th days of seedling growth, respectively. The maximum of proteolytic activity preceded the maximum of nuclease activity, which may be due to activation of nucleases by proteolytic enzymes. According to inhibitory analysis the cysteine and serine proteases play the main role in apoptosis in wheat coleoptiles. Growing of seedlings in the presence of ethrel stimulated apoptosis in the coleoptile, and it increased (almost 6-fold) the proteolytic activity in its cells. On the other hand, the antioxidant ionol (BHT) suppressed the induction of proteases, particularly at the second stage of coleoptile development, and it slowed down the increase in the nuclease activity after 6th day of the seedling life. It is suggested that phytohormones and antioxidants participate in regulation of apoptosis in the ageing coleoptile, directly or indirectly effecting the proteolytic apparatus in the coleoptile cells.  相似文献   

13.
The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following Vdahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more and less H2O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of Vdahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in Vdahliae.  相似文献   

14.
The mitochondria play essential roles in both intracellular calcium and reactive oxygen species signaling.As a newly discovered universal and fundamental mitochondrial phenomenon,superoxide flashes reflect transient bursts of superoxide production in the matrix of single mitochondria.Whether and how the superoxide flash activity is regulated by mitochondrial calcium remain largely unknown.Here we demonstrate that elevating mitochondrial calcium either by the calcium ionophore ionomycin or by increasing the bathing calcium in permeabilized HeLa cells increases superoxide flash incidence,and inhibition of the mitochondrial calcium uniporter activity abolishes the flash response.Quantitatively,the superoxide flash incidence is correlated to the steady-state mitochondrial calcium elevation with 1.7-fold increase per 1.0?F/F0 of Rhod-2 signal.In contrast,large mitochondrial calcium transients(e.g.,peak△F/F0~2.8,duration~2 min)in the absence of steady-state elevations failed to alter the flash activity.These results indicate that physiological levels of sustained,but not transient,mitochondrial calcium elevation acts as a potent regulator of superoxide flashes,but its mechanism of action likely involves a multi-step,slow-onset process.  相似文献   

15.
《Free radical research》2013,47(10):1259-1268
Abstract

Background. The objective of the present study was to determine whether single administration of the antioxidant enzyme bovine superoxide dismutase (bSOD) after radiation therapy (RT) mitigates development of pulmonary toxicity in rats. Methods. Female F344 rats (n = 60) were divided among six experimental groups: (1) RT, single dose of 21 Gy to the right hemithorax; (2) RT + 5 mg/kg bSOD; (3) RT + 15 mg/kg bSOD; (4) No RT; (5) sham RT + 5 mg/kg bSOD; and (6) sham RT + 15 mg/kg bSOD. A single subcutaneous injection of bSOD (5 or 15 mg/kg) was administered 24 h post-radiation. The effects of bSOD on radiation-induced lung injury were assessed by measurement of body weight, breathing frequency, and histopathological changes. Immunohistochemistry was used to evaluate oxidative stress (8-OHdG+, NOX4+, nitrotyrosine+, and 4HNE+ cells), macrophage activation (ED1+), and expression of profibrotic transforming growth factor-β or TGF-β in irradiated tissue. Results. Radiation led to an increase in all the evaluated parameters. Treatment with 15 mg/kg bSOD significantly decreased levels of all the evaluated parameters including tissue damage and breathing frequency starting 6 weeks post-radiation. Animals treated with 5 mg/kg bSOD trended toward a suppression of radiation-induced lung damage but did not reach statistical significance. Conclusions. The single application of bSOD (15 mg/kg) ameliorates radiation-induced lung injury through suppression of reactive oxygen species/reactive nitrogen species or ROS/RNS-dependent tissue damage.  相似文献   

16.
Introduction – In plants, the ROS (reactive oxygen species) level is tightly regulated because their accumulation produces irreversible damage leading to cell death. However, ROS accumulation plays a key role in plant signaling under biotic or abiotic stress. Although various methods were reported to evaluate ROS accumulation, they are restricted to model plants or provide only qualitative information. Objective – Develop a simple method to quantify superoxide radicals produced in plant tissues, based on the selective extraction of the formazan produced after nitroblue tetrazolium (NBT) reduction in histochemical staining. Methodology – Plant leaves were stained with a standard NBT method and the formazan precipitated in tissues was selectively extracted using chloroform. The organic phase was dried and formazan residue dissolved in dimethylsulfoxide–potassium hydroxide and quantified by spectrophotometry. The method was tested in strawberry plant leaves under different stressing conditions. Results – Formazan extracted from leaves subjected to stress conditions showed similar absorption spectra to those obtained from standard solutions using pure formazan. Calibration curves showed a linear relationship between absorbance and formazan amounts, within the range 0.5–8 µg. Outcomes suggested that formazan was retained in the solid residue of leaf tissues. This protocol allowed us to quantify superoxide radicals produced under different stress conditions. Conclusions – Chloroform allowed a selective formazan extraction and removal of potential endogenous, exogenous or procedural artefacts that may interfere with the quantitative determination. This protocol can be used to quantify the superoxide produced in plant tissues using any traditional qualitative NBT histochemical staining method.  相似文献   

17.
Abstract

Macroscopic symptoms were observed in two strawberry cultivars, with the degree of symptom intensity varying depending on the susceptibility of the cultivars, i.e. resistant or susceptible. The symptoms presented as red spots and were observed 30 d following leaf tissue inoculation with the Mycosphaerella fragariae pathogen. A comparison of the superoxide dismutase isoform profiles obtained by gel electrophoresis in all samples extracted from both resistant and susceptible cultivars indicated one constant sharp band, identified as Mn[sbnd]SOD with a molecular mass of 19 kDa. The intensity of this band was higher in all samples derived from the resistant cultivar than in those from the susceptible cultivar. Another superoxide dismutase (SOD) isoform, identified as CuZn[sbnd]SOD with a molecular mass of 16 kDa, was detected in all soluble proteins derived from the resistant cultivar. This isoform was not observed in the susceptible cultivar; however, following an incremental increase in the amount of loaded protein, it was illuminated as a faint band in a sample collected 3 d after inoculation, indicating insufficient production of the CuZn[sbnd]SOD isoform in the susceptible cultivar during an oxidative burst induced by the M. fragaria pathogen. Several bands were also characterized in both cultivars containing Fe and Mn as their co-factors (Fe, Mn[sbnd]SOD). Unlike in the resistant cultivar, where the activity of Fe, Mn[sbnd]SOD isoforms gradually and regularly increased and reached its highest level on the third day after inoculation, the activity of the isoforms changed irregularly over 20 days of study in the susceptible cultivar.  相似文献   

18.
Lambert AJ  Buckingham JA  Brand MD 《FEBS letters》2008,582(12):1711-1714
The relationship between the rate of superoxide production by complex I and NAD(P)H redox state was investigated in rat skeletal muscle mitochondria. A high rate of superoxide production was observed during succinate oxidation; the rate during pyruvate oxidation was over fourfold lower. However, the NAD(P)H pool was significantly less reduced during succinate oxidation than during pyruvate oxidation. We conclude that there is no unique relationship between superoxide production by complex I and the reduction state of the NAD(P)H pool. Our data suggest that less than 10% of the superoxide originates from the flavin site during reverse electron transport from succinate.  相似文献   

19.
To clarify the radical-scavenging activity of butylated hydroxytoluene (BHT), a food additive, stoichiometric factors (n) and inhibition rate constants (kinh) were determined for 2,6-di-tert-butyl-4-methylphenol (BHT) and its metabolites 2,6-di-tert-butyl-p-benzoquinone (BHT-Q), 3,5-di-tert-butyl-4-hydroxybenzaldehyde (BHA-CHO) and 3,5-di-tert-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadiene-1-one (BHT-OOH). Values of n and kinh were determined from differential scanning calorimetry (DSC) monitoring of the polymerization of methyl methacrylate (MMA) initiated by 2,2′-azobis(isobutyronitrile) (AIBN) or benzoyl peroxide (BPO) at 70 °C in the presence or absence of antioxidants (BHT-related compounds). The n values declined in the order BHT (1–2) > BHT-CHO, BHT-OOH (0.1–0.3) > BHT-Q (0). The n value for BHT with AIBN was approximately 1.0, suggesting dimerization of BHT. The kinh values declined in the order BHT-Q ((3.5–4.6)×104 M−1 s−1) > BHT-OOH (0.7–1.9×104 M−1 s−1) > BHT-CHO ((0.4–1.7)×104 M−1 s−1) > BHT ((0.1–0.2)×104 M−1 s−1). The kinh for metabolites was greater than that for the parent BHT. Growing MMA radicals initiated by BPO were suppressed much more efficiently by BHT or BHT-Q compared with those initiated by AIBN. BHT was effective as a chain-breaking antioxidant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号