首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Desmin is a muscle-specific intermediate filament that is encoded by a gene assigned to human chromosome 2q35. Desmin-related myopathies are inherited disorders characterized by an intrasarcoplasmic accumulation of desmin. Recently, the knockout of the desmin gene was shown to generate a myopathic syndrome in transgenic mice, suggesting that functional abnormality of desmin may generate similar clinical symptoms in mouse and human. To determine the potential role of the desmin gene in a well-defined desmin-related myopathy (autosomal dominant form of Fardeau), human desmin cDNAs obtained from affected and unaffected individuals were cloned, sequenced and compared. No obvious mutation was detected. A BssHII restriction fragment length polymorphism (RFLP) was identified in exon 6 of the desmin gene. This RFLP was associated with a previously identified EcoRV RFLP in exon 4 to generate a tetra-allelic system, which was tested for linkage to the desmin-related myopathy in three families. The human desmin gene was localized within an 11-cM interval on chromosome 2q using a panel of radiation hybrids. This 11-cM region was clearly excluded by linkage analysis in the three desmin-related myopathy families using a set of highly polymorphic microsatellite markers. These results suggest that the desmin gene is not primarily involved in this disease. Received: 17 April 1996 / Revised: 3 June 1996  相似文献   

2.
In the mouse, innate resistance or susceptibility to infection with a group of unrelated intracellular parasites which includes, Mycobacteria, Salmonella, and Leishmania is determined by the expression of a single dominant autosomal gene designated Bcg located on the proximal portion of chromosome 1. The gene is expressed at the level of the mature tissue macrophage and influences its capacity to restrict intracellular proliferation of the parasites. We have used restriction fragment length polymorphism analysis in segregating populations of inter- and intraspecific backcross mice and in recombinant inbred strains to position four new marker genes, transition protein 1 (Tp-1), desmin (Des), the alpha subunit of inhibin (Inha), and retinal S-antigen (Sag), in the vicinity of the host resistance locus, Bcg. The gene order for Tp-1, Des, Inha, and Sag was established in an eight-point testcross with respect to anchor loci previously assigned to that portion of mouse chromosome 1 and was found to be centromere-Fn-1-Tp-1-(Vil,Bcg)-Des-Inha-Akp-3-Acrg+ ++-Sag. Two of these new marker genes were found very tightly linked to Bcg: Des was located 0.3 +/- 0.3 cM distal from (Vil,Bcg) and 0.3 +/- 0.3 cM proximal to Inha. Tp-1 mapped 0.8 +/- 0.8 cM proximal and Sag 12.8 +/- 1.7 cM distal to (Vil,Bcg). Tp-1, Des, Inha, and Sag all fall within a large mouse chromosome 1 segment homologous with the telomeric region of the long arm of human chromosome 2 (2q). Our findings indicate that the two closest markers to the host resistance locus, Bcg, encode cytoskeleton-associated proteins which are capable of interaction with actin filaments.  相似文献   

3.
The human desmin and vimentin genes are located on different chromosomes   总被引:4,自引:0,他引:4  
We have used somatic cell hybrids of Chinese hamster X man and mouse X man to localize the genes (des and vim) encoding the intermediate filaments desmin and vimentin in the human genome. Southern blots of DNA prepared from each cell line were screened with hamster cDNA probes specific for des and vim genes, respectively. The single-copy human des gene is located on chromosome 2, and the single-copy human vim gene is assigned to chromosome 10. Partial restriction maps of the two human genomic loci are presented. A possible correlation of the des locus with several reported hereditary myopathies is discussed.  相似文献   

4.
Conserved linkage groups have been found on the X and autosomal chromosomes in several mammalian species. The identification of conserved chromosomal regions has potential for predicting gene location in mammals, particularly in humans. The genes for human aminoacylase-1 (ACY1, N-acylamino acid aminohydrolase, E.C.3.5.1.14), an enzyme in amino acid metabolism, and beta-galactosidase-A (GLB1, E.C.3.2.1.23), deficient in GM1-gangliosidosis, have been assigned to human chromosome 3. Using human-mouse somatic cell hybrids segregating translocations of human chromosome 3, expression of both ACY1 and GLB1 correlated with the presence of the p21 leads to q21 region of chromosome 3. In a previous study, assignment of these genes to mouse chromosome 9 used mouse-Chinese hamster somatic cell hybrids, eliminating mouse chromosomes. To approximate the size of the conserved region in the mouse, experiments were performed with recombinant inbred mouse strains. An electrophoretic variant of ACY-1 in mouse strains was used to map the Acy-1 gene 10.7 map U from the beta-galactosidase locus. These data suggest that there is a region of homology within the p21 leads to q21 region of human chromosome 3 and a segment of mouse chromosome 9. Since the mouse transferrin gene (Trf) is closely linked to the aminoacylase and beta-galactosidase loci, we predict that the human transferrin (TF) gene is on chromosome 3.  相似文献   

5.
Is ZFY the sex-determining gene on the human Y chromosome?   总被引:3,自引:0,他引:3  
The sex-determining region of the human Y chromosome contains a gene, ZFY, that encodes a zinc-finger protein. ZFY may prove to be the testis-determining factor. There is a closely related gene, ZFX, on the human X chromosome. In most species of placental mammals, we detect two ZFY-related loci: one on the Y chromosome and one on the X chromosome. However, there are four ZFY-homologous loci in mouse: Zfy-1 and Zfy-2 map to the sex-determining region of the mouse Y chromosome, Zfx is on the mouse X chromosome, and a fourth locus is autosomal.  相似文献   

6.
J Wagstaff  J R Chaillet  M Lalande 《Genomics》1991,11(4):1071-1078
A cDNA encoding the human GABAA receptor beta 3 subunit has been isolated from a brain cDNA library and its nucleotide sequence has been determined. This gene, GABRB3, has recently been mapped to human chromosome 15q11q13, the region deleted in Angelman and Prader-Willi syndromes. The association of distinct phenotypes with maternal versus paternal deletions of this region suggests that one or more genes in this region show parental-origin-dependent expression (genetic imprinting). Comparison of the inferred human beta 3 subunit amino acid sequence with beta 3 subunit sequences from rat, cow, and chicken shows a very high degree of evolutionary conservation. We have used this cDNA to map the mouse beta 3 subunit gene, Gabrb-3, in recombinant inbred strains. The gene is located on mouse chromosome 7, very closely linked to Xmv-33 between Tam-1 and Mtv-1, where two other genes from human 15q11q13 have also been mapped. This provides further evidence for a region of conserved synteny between human chromosome 15q11q13 and mouse chromosome 7. Proximal and distal regions of mouse chromosome 7 show genetic imprinting effects; however, the region of homology with human chromosome 15q11q13 has not yet been associated with these effects.  相似文献   

7.
8.
A recombinant plasmid containing the mouse c-myc gene was injected into mouse pronuclei. The transgenic line 478 contains about 100 copies of the transgene integrated into one chromosome site. By in situ hybridization, the integration site was localized to chromosome 8B3-C1.  相似文献   

9.
We report the molecular cloning of a KIR3DL1 receptor in the mouse and the rat, between 37.4 and 45.4% identical with primate killer cell Ig-like receptors (KIRs/CD158). Both mouse and rat molecules contain a pair of immunoreceptor tyrosine-based inhibition motifs in their cytoplasmic regions, suggesting an inhibitory function. Southern blot analysis indicated a single KIR gene in the rat, whereas the mouse genome contains more than one KIR-related element. The rat Kir3dl1 locus was mapped to the leukocyte receptor gene complex on chromosome 1, whereas mouse Kir3dl1 was localized to the X chromosome. RT-PCR demonstrated that KIR3DL1 was selectively expressed by NK cells in both rat and mouse. An epitope-tagged expression construct of mouse KIR3DL1 transfected into 293T cells induced expression of a approximately 55-kDa protein. Our data indicate that KIR receptors may contribute to the NK cell receptor repertoire in rodents, alongside the Ly-49 family.  相似文献   

10.
The chromosomal locations of the human and murine T11 (CD2) gene have been determined. Using recently cloned cDNA to probe Southern blots of mouse X human and Chinese hamster X mouse somatic cell hybrids, we have localized the human T11 gene to chromosome 1 and the murine T11 gene to chromosome 3. Based on previously determined blocks of homology between human chromosome 1 and mouse chromosome 3, it is suggested that the human T11 gene may lie on the short arm of chromosome 1 proximal to p221. Thus, the T11 gene is not linked to any other genes for T cell markers that have been mapped to date.  相似文献   

11.
R Anand  J Lindstrom 《Genomics》1992,13(4):962-967
We have determined the chromosomal location of seven human neuronal nicotinic acetylcholine receptor subunit genes by genomic Southern analysis of hamster/human somatic cell hybrid DNAs. The beta 2 subunit gene was localized to human chromosome 1, the alpha 2 and beta 3 subunit genes were localized to human chromosome 8, the alpha 3, alpha 5, and beta 4 subunit genes were localized to human chromosome 15, and the alpha 4 subunit gene was localized to human chromosome 20. Mapping of the beta 2 subunit gene to chromosome 1 establishes a syntenic group with the amylase gene locus on human chromosome 1 and mouse chromosome 3, while mapping of the alpha 3 subunit gene to chromosome 15 confirms the existence of a syntenic group with the mannose phosphate isomerase gene locus on human chromosome 15 and mouse chromosome 9.  相似文献   

12.
Chromosomal localization of zinc finger protein genes in man and mouse   总被引:5,自引:0,他引:5  
We have determined the mouse and human chromosomal location of a gene (Zfp-3) that codes for a protein that contains potential DNA zinc-binding fingers. An analysis of the segregation of restriction fragment length polymorphisms in recombinant inbred strains and in an interspecific backcross demonstrated that Zfp-3 is located on mouse chromosome 11. Zfp-3 is very closely linked to the Trp53-1 locus but unlinked to another finger protein gene Zfp-4 located on mouse chromosome 8. In humans ZFP3 has been localized to chromosome 17p12-17pter and thus is part of the conserved linkage group between this chromosome and the distal half of mouse chromosome 11.  相似文献   

13.
We describe the isolation and characterization of the gene encoding the mouse high affinity Fc receptor Fc gamma RI. Using a mouse cDNA Fc gamma RI probe four unique overlapping genomic clones were isolated and were found to encode the entire 9 kb of the mouse Fc gamma RI gene. Sequence analysis of the gene showed that six exons account for the entire Fc gamma RI cDNA sequences including the 5'- and 3'-untranslated sequences. The first and second exons encode the signal peptide; exons 3, 4, and 5 encode the extracellular Ig binding domains; and exon 6 encodes the transmembrane domain, the cytoplasmic region, and the entire 3'-untranslated sequence. This exon pattern is similar to Fc gamma RIII and Fc epsilon RI but differs from the related Fc gamma RII gene which contains 10 exons and encodes the b1 and b2 Fc gamma RII. Southern blot analysis had shown that the mouse Fc gamma RI gene is a single copy gene with no RFLP in inbred strains of mice, but analysis of an intersubspecies backcross of mice showed that unlike other mouse FcR genes which are on mouse chromosome 1 the locus encoding Fc gamma RI, termed Fcg1, is located on chromosome 3. Interestingly, the Fcg1 locus is located near the end of a region with known linkage homology to human chromosome 1. Analysis of human x rodent somatic cell hybrid cell lines indicates that the human FCG1 locus encoding the human Fc gamma RI maps to chromosome I and therefore possibly linked to other FcR genes on this chromosome. These results suggest that the linkage relationships among these genes in the human genome are not preserved in the mouse.  相似文献   

14.
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12.  相似文献   

15.
The IL-4 gene maps to chromosome 11, near the gene encoding IL-3   总被引:3,自引:0,他引:3  
IL-4/B cell stimulatory factor 1 (IL-4) is a potent mediator of the growth and differentiation of cells of most hemopoietic lineages. IL-4 is one of a number of lymphokines produced by T cells after activation with Ag or mitogen. In order to map the chromosomal location of the IL-4 gene, Chinese hamster-mouse somatic cell hybrids were used in Southern blot analyses with an IL-4 cDNA probe. These results suggested that the IL-4 gene was located on chromosome 11. In contrast, the gene encoding IL-2 was localized to either chromosome 1 or 3. The identification of a strain-specific Bgl II restriction enzyme polymorphism in the IL-4 gene was used to map the IL-4 gene to a position on mouse chromosome 11 within 1 centimorgan of the gene encoding IL-3.  相似文献   

16.
Recent chromosome walking experiments have identified a candidate gene (ZFY) for the testis-determining factor on the human Y chromosome (Page et al., 1987). We report here the regional assignments of the ZFY gene and related sequences in the human and the mouse. By in situ hybridization, we assigned ZFX and ZFY to human chromosome bands Xp21 and Yp11.3, respectively. Although the mouse harbors two Zfy genes, only one site at band A1 of its Y chromosome was significantly labeled. The mouse Zfx gene and the Zfa gene on chromosome 10 were assigned to bands XD and 10B5, respectively. These assignments of the ZFX gene in human and mouse add another marker to the conserved syntenic group for evaluating the evolutionary relationship of the human and mouse X chromosomes.  相似文献   

17.
The chromosomal localization of the mouse gene coding for the 68 kDa intermediate filament subunit of neurones (NF-L) was determined by in situ hybridization using specific 3H-labelled DNA probes. There is only one copy of the NF-L gene. The gene encoding NF-L is located on chromosome 14 region (D1-E1).  相似文献   

18.
E Schurr  E Skamene  K Morgan  M L Chu  P Gros 《Genomics》1990,8(3):477-486
We have investigated the degree of synteny between the long arm (q) of human chromosome 2 and the proximal portion of mouse chromosome 1. To define the limits of synteny, we have determined whether mouse homologs of seven human genes mapping to chromosome 2q cosegregated with anchor loci on mouse chromosome 1. The loci investigated were NEB/Neb, ELN/Eln, COL3A1/Col3a1, CRYG/Len-2, FN1/Fn-1, VIL/Vil, and COL6A3/Col6a3. Ren-1,2 and Acrg were included as two proximal mouse chromosome 1 anchor loci. The segregation of restriction fragment length polymorphisms at these loci was analyzed in the progeny of Mus spretus x C57BL/6J hybrids backcrossed to the C57BL/6J inbred strain. We found that five of the structural protein loci and the two anchor loci form a linkage group on proximal murine chromosome 1. The proposed gene order of this group of linked markers is centromere - Col3a1 - Len-2-Fn-1-Vil-Acrg-Col6a3-Ren1,2. Neb and Eln are linked neither to each other nor to any other marker on proximal mouse chromosome 1. Therefore, the mouse loci Col3a1 and Col6a3 are identified as flanking markers of the linkage group of structural protein loci. The estimated genetic map distances are Col3a1-13.3 cM-Len-2-3.4 cM-Fn-1-3.8 cM-Vil-9.6 cM-Acrg-2.1 cM-Col6a3-18.3 cM-Ren1,2. The available map information for human chromosome 2q markers and mouse chromosome 1 markers presented here tentatively identifies Col3a1 and Col6a3 as the border markers that define the limits of the syntenic chromosome segment. The order of mouse genes on chromosome 1 and their human homologs on chromosome 2q also appears to be conserved, suggesting that mapping of murine genes on the conserved segment may be useful to predict gene order in man.  相似文献   

19.
Comparative mapping between the human and the mouse genomes allows characterization of linkage groups that have been conserved over evolution. In this study, genes previously localized to adjacent regions of human chromosome 1 were mapped to discrete regions on distal mouse chromosomes 1 and 3 using an interspecific cross. Linkage analysis in mouse defined two groups in which the gene order appears to be the same as that in humans: 15 genes localized between human chromosome 1q21 and 1q32 were found to span 29.5 cM on distal mouse chromosome 1; 6 genes localized between human chromosome 1q21 and 1p22 spanned 15.6 cM on distal mouse chromosome 3. These data suggest that gene order within large chromosome segments may remain stable over long periods of evolution and that the position of the centromere may reflect a late event in the evolution of higher eukaryotic organisms. These studies provide a model for examination of specific evolutionary events.  相似文献   

20.
H M Chin  C A Kozak  H L Kim  B Mock  O W McBride 《Genomics》1991,11(4):914-919
A rat brain cDNA probe was used to localize a gene encoding the alpha 1 subunit of neuronal dihydropyridine-sensitive L-type calcium channels in the mouse and human genomes. Hybridization of the probe to Southern blots made with DNAs from a Chinese hamster x mouse somatic cell hybrid panel indicated that this gene maps to mouse chromosome 14 (Chr 14). Southern blot analysis of an intersubspecies cross demonstrated that the calcium channel alpha 1 subunit gene, termed Cchl1a2, can be positioned 7.5 cM proximal to Np-1. Similarly, segregation among human X rodent somatic cell hybrids indicated that CCHL1A2 maps to human chromosome 3. These assignments are consistent with a region of linkage homology between human chromosome 3p and a proximal region of mouse Chr 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号