首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
万超  彭练慈  叶超 《微生物学报》2023,63(4):1305-1317
宿主防御肽是一类广泛存在于脊椎动物的小分子多肽,具有广谱的抗菌活性以及抗炎、细胞趋化、促进血管生成和修复损伤等免疫调节功能。以往的研究多集中在宿主防御肽抗细菌和真菌感染的研究上。近年来大量研究发现,宿主防御肽也具有广泛的抗病毒活性,在临床各类病毒病的预防和治疗上具有潜在的应用前景。本文围绕宿主防御肽直接杀伤病毒、调节病毒感染过程和参与宿主抗病毒天然免疫调节这3个方面的作用机制进行综述,为宿主防御肽抗病毒相关研究和相关抗病毒生物药物的研发提供参考和借鉴。  相似文献   

2.
Host defense peptides (historically called antimicrobial peptides, AMPs) are key components in the mammalian innate immune system, and are responsible for both direct killing and immunomodulatory effects in host defense against pathogenic organisms. In order to identify novel host defense peptides by sequence analysis, we constructed the AMPer resource (http://www.cnbi2.com/cgi-bin/amp.pl) that utilizes hidden Markov models to recognize sequences of antimicrobial peptides. In the current work, we utilized the AMPer resource to search bovine expressed sequence tags from the NCBI dbEST project and the bovine genome sequence for novel host defense peptides. Of the 34 known bovine AMPs, 27 were identified with high confidence in the AMPs predicted from ESTs. A further potential 68 AMPs predicted from the EST data were found that appear to be novel giving a total estimate of 102 AMPs present in the genome. Two of these were cathelicidins and selected for experimental verification in RNA derived from bovine tissue. One predicted AMP, most similar to rabbit '15 kDa protein' AMP, was confirmed to be present in infected bovine intestinal tissue using PCR. These findings demonstrated the practical applicability of the developed bioinformatics approach and laid a foundation for future discoveries of gene-coded AMPs. No members of the alpha-defensin family were found in the bovine sequences. Since we could find no technical reasons these would be missed and no references to bovine alpha-defensins in the literature, this suggests that cattle lack this important family of host defense peptides.  相似文献   

3.
Peschel A  Collins LV 《Peptides》2001,22(10):1651-1659
Antimicrobial host defense peptides, such as defensins, protegrins, and platelet microbicidal proteins are deployed by mammalian skin, epithelia, phagocytes, and platelets in response to Staphylococcus aureus infection. In addition, staphylococcal products with similar structures and activities, called bacteriocins, inhibit competing microorganisms. Staphylococci have developed resistance mechanisms, which are either highly specific for certain host defense peptides or bacteriocins or which broadly protect against a range of cationic antimicrobial peptides. Experimental infection models can be used to study the molecular mechanisms of antimicrobial peptides, the peptide resistance strategies of S. aureus, and the therapeutic potential of peptides in staphylococcal diseases.  相似文献   

4.

Background  

Latest research shows that small antimicrobial peptides play a role in the innate defense system of plants. These peptides typically contribute to preformed defense by developing protective barriers around germinating seeds or between different tissue layers within plant organs. The encoding genes could also be upregulated by abiotic and biotic stimuli during active defense processes. The peptides display a broad spectrum of antimicrobial activities. Their potent anti-pathogenic characteristics have ensured that they are promising targets in the medical and agricultural biotechnology sectors.  相似文献   

5.
6.
Antimicrobial peptides, or host defense peptides, are universal signaling and effector molecules in host defense and innate immunity. This article highlights various tools developed for cathelicidins and defensins, ranging from peptide identification, production, and structural biology, including the eight databases for antimicrobial peptides. Novel peptides can be identified from natural sources at both gene and protein levels. Solid-phase synthesis and bacterial expression are the two important methods for peptide production. Three-dimensional structures of antimicrobial peptides, primarily determined by solution NMR techniques, are essential for an in-depth understanding of the mode of action. The introduction of octanoyl phosphatidylglycerol as a bacterial membrane-mimetic model provides new insights into peptide-lipid interactions. The incorporation of structure and activity data into the antimicrobial peptide database (http://aps.unmc.edu/AP/main.html) will lead to an integrated understanding of these peptides via structural bioinformatics.  相似文献   

7.
Plant defense and antimicrobial peptides   总被引:9,自引:0,他引:9  
Plants are constantly exposed to a large array of pathogenic organisms and the survival in these conditions demands quick defense responses which include the synthesis of defense peptides and proteins with antimicrobial properties. The main groups of antimicrobial peptides found in plants are thionins, defensins and lipid transfer proteins. They constitute interesting candidates to engineer disease resistance in plants.  相似文献   

8.
Hydroxyproline-rich glycopeptides (HypSys peptides) are recently discovered 16-20-amino acid defense signals in tobacco and tomato leaves that are derived from cell wall-associated precursors. The peptides are powerful wound signals that activate the expression of defensive genes in tobacco and tomato leaves in response to herbivore attacks. We have isolated a cDNA from petunia (Petunia hybrida) leaves encoding a putative protein of 214 amino acids that is a homolog of tobacco and tomato HypSys peptide precursors and is inducible by wounding and MeJA. The deduced protein contains a leader sequence and four predicted proline-rich peptides of 18-21 amino acids. Three of the four peptides were isolated from leaves, and each peptide contained hydroxylated prolines and glycosyl residues. Each of the peptides has a -GR- motif at its N terminus, indicating that it may be the substrate site for a processing enzyme. The peptides were active in a petunia suspension culture bioassay at nanomolar concentrations, but they did not induce the expression of defense genes that are directed against herbivores, as found in tobacco and tomato leaves. They did, however, activate expression of defensin 1, a gene associated with inducible defense responses against pathogens.  相似文献   

9.
Flowers represent a relatively unexplored source of antimicrobial peptides of biotechnological potential. This review focuses on flower-derived defense peptide classes with inhibitory activity towards plant pathogens. Small cationic peptides display diverse activities, including inhibition of digestive enzymes and bacterial and/or fungal inhibition. Considerable research is ongoing in this area, with natural crop plant defense potentially improved through the application of transgenic technologies. In this report, comparisons were made of peptide tertiary structures isolated from diverse flower species. A summary is provided of molecular interactions between flower peptides and pathogens, which include the role of membrane proteins and lipids. Research on these peptides is contributing to our understanding of pathogen resistance mechanisms, which will, given the perspectives for plant genetic modification, contribute long term to plant genetic improvement for increased resistance to diverse pathogens.  相似文献   

10.
The production of antimicrobial peptides and proteins is essential for defense against infection. Many of the known human antimicrobial peptides are multifunctional, with stimulatory activities such as chemotaxis while simultaneously acting as natural antibiotics. In humans, eccrine appendages express DCD and CAMP, genes encoding proteins processed into the antimicrobial peptides dermcidin and LL-37. In this study we show that after secretion onto the skin surface, the CAMP gene product is processed by a serine protease-dependent mechanism into multiple novel antimicrobial peptides distinct from the cathelicidin LL-37. These peptides show enhanced antimicrobial action, acquiring the ability to kill skin pathogens such as Staphylococcus aureus and Candida albicans. Furthermore, although LL-37 may influence the host inflammatory response by stimulating IL-8 release from keratinocytes, this activity is lost in subsequently processed peptides. Thus, a single gene product encoding an important defense molecule alters structure and function in the topical environment to shift the balance of activity toward direct inhibition of microbial colonization.  相似文献   

11.
A requisite for efficacious host defense against pathogens and predators has prioritized evolution of effector molecules thereof. A recent multidimensional analysis of physicochemical properties revealed a novel, unifying structural signature among virtually all classes of cysteine-containing antimicrobial peptides. This motif, termed the gamma-core, is seen in host defense peptides from organisms spanning more than 2.6 billion years of evolution. Interestingly, many toxins possess the gamma-core signature, consistent with discoveries of their direct antimicrobial activity. Many microbicidal chemokines (kinocidins) likewise contain iterations of the gamma-core motif, reconciling their antimicrobial efficacy. Importantly, these polypeptide classes have evolved to target and modulate biomembranes in protecting respective hosts against unfavorable interactions with potential pathogens or predators. Extending on this concept, the current report addresses the hypothesis that antimicrobial peptides, kinocidins, and polypeptide toxins are structurally congruent and share a remarkably close phylogenetic relationship, paralleling their roles in host-pathogen relationships. Analyses of their mature amino acid sequences demonstrated that cysteine-stabilized antimicrobial peptides, kinocidins, and toxins share ancient evolutionary relatedness stemming from early precursors of the gamma-core signature. Moreover, comparative 3-D structure analysis revealed recurring iterations of antimicrobial peptide gamma-core motifs within kinocidins and toxins. However, despite such congruence in gamma-core motifs, the kinocidins diverged in overall homology from microbicidal peptides or toxins. These findings are consistent with observations that chemokines are not toxic to mammalian cells, in contrast to many antimicrobial peptides and toxins. Thus, specific functions of these molecular effectors may be governed by specific configurations of structural modules associated with a common gamma-core motif. These concepts are consistent with the hypothesis that the gamma-core is an archetype determinant in polypeptides that target or regulate with biological membranes, with specific iterations optimized to unique or cognate host defense contexts. Quantitative and qualitative data suggest these protein families emerged through both parallel and divergent processes of modular evolution. Taken together, the current and prior findings imply that the gamma-core motif contributes to conserved structures and functions of host defense polypeptides. The presence of this unifying molecular signature in otherwise diverse categories of membrane-active host defense peptides implies an ancient and essential role for such a motif in effector molecules governing host-pathogen relationships.  相似文献   

12.
A requisite for efficacious host defense against pathogens and predators has prioritized evolution of effector molecules thereof. A recent multidimensional analysis of physicochemical properties revealed a novel, unifying structural signature among virtually all classes of cysteine-containing antimicrobial peptides. This motif, termed the γ-core, is seen in host defense peptides from organisms spanning more than 2.6 billion years of evolution. Interestingly, many toxins possess the γ-core signature, consistent with discoveries of their direct antimicrobial activity. Many microbicidal chemokines (kinocidins) likewise contain iterations of the γ-core motif, reconciling their antimicrobial efficacy. Importantly, these polypeptide classes have evolved to target and modulate biomembranes in protecting respective hosts against unfavorable interactions with potential pathogens or predators. Extending on this concept, the current report addresses the hypothesis that antimicrobial peptides, kinocidins, and polypeptide toxins are structurally congruent and share a remarkably close phylogenetic relationship, paralleling their roles in host-pathogen relationships. Analyses of their mature amino acid sequences demonstrated that cysteine-stabilized antimicrobial peptides, kinocidins, and toxins share ancient evolutionary relatedness stemming from early precursors of the γ-core signature. Moreover, comparative 3-D structure analysis revealed recurring iterations of antimicrobial peptide γ-core motifs within kinocidins and toxins. However, despite such congruence in γ-core motifs, the kinocidins diverged in overall homology from microbicidal peptides or toxins. These findings are consistent with observations that chemokines are not toxic to mammalian cells, in contrast to many antimicrobial peptides and toxins. Thus, specific functions of these molecular effectors may be governed by specific configurations of structural modules associated with a common γ-core motif. These concepts are consistent with the hypothesis that the γ-core is an archetype determinant in polypeptides that target or regulate with biological membranes, with specific iterations optimized to unique or cognate host defense contexts. Quantitative and qualitative data suggest these protein families emerged through both parallel and divergent processes of modular evolution. Taken together, the current and prior findings imply that the γ-core motif contributes to conserved structures and functions of host defense polypeptides. The presence of this unifying molecular signature in otherwise diverse categories of membrane-active host defense peptides implies an ancient and essential role for such a motif in effector molecules governing host-pathogen relationships.  相似文献   

13.
Protein homeostasis (proteostasis) is crucial for proper cellular function, including the production of peptides with biological functions through controlled proteolysis. Proteostasis has roles in maintenance of cellular functions and plant interactions with the environment under physiological conditions. Plant stress continues to reduce agricultural yields causing substantial economic losses; thus, it is critical to understand how plants perceive stress signals to elicit responses for survival. As previously shown in Arabidopsis thaliana, thimet oligopeptidases (TOPs) TOP1 (also referred to as organellar oligopeptidase) and TOP2 (also referred to as cytosolic oligopeptidase) are essential components in plant response to pathogens, but further characterization of TOPs and their peptide substrates is required to understand their contributions to stress perception and defense signaling. Herein, label-free peptidomics via liquid chromatography-tandem mass spectrometry was used to differentially quantify 1111 peptides, originating from 369 proteins, between the Arabidopsis Col-0 wild type and top1top2 knock-out mutant. This revealed 350 peptides as significantly more abundant in the mutant, representing accumulation of these potential TOP substrates. Ten direct substrates were validated using in vitro enzyme assays with recombinant TOPs and synthetic candidate peptides. These TOP substrates are derived from proteins involved in photosynthesis, glycolysis, protein folding, biogenesis, and antioxidant defense, implicating TOP involvement in processes aside from defense signaling. Sequence motif analysis revealed TOP cleavage preference for non-polar residues in the positions surrounding the cleavage site. Identification of these substrates provides a framework for TOP signaling networks, through which the interplay between proteolytic pathways and defense signaling can be further characterized.  相似文献   

14.
Although much progress has been achieved in the development of cancer therapies in recent decades, problems continue to arise particularly with respect to chemotherapy due to resistance to and low specificity of currently available drugs. Host defense peptides as effector molecules of innate immunity represent a novel strategy for the development of alternative anticancer drug molecules. These cationic amphipathic peptides are able to discriminate between neoplastic and non-neoplastic cells interacting specifically with negatively charged membrane components such as phosphatidylserine (PS), sialic acid or heparan sulfate, which differ between cancer and non-cancer cells. Furthermore, an increased number of microvilli has been found on cancer cells leading to an increase in cell surface area, which may in turn enhance their susceptibility to anticancer peptides. Thus, part of this review will be devoted to the differences in membrane composition of non-cancer and cancer cells with a focus on the exposure of PS on the outer membrane. Normally, surface exposed PS triggers apoptosis, which can however be circumvented by cancer cells by various means.Host defense peptides, which selectively target differences between cancer and non-cancer cell membranes, have excellent tumor tissue penetration and can thus reach the site of both primary tumor and distant metastasis. Since these molecules kill their target cells rapidly and mainly by perturbing the integrity of the plasma membrane, resistance is less likely to occur. Hence, a chapter will also describe studies related to the molecular mechanisms of membrane damage as well as alternative non-membrane related mechanisms. In vivo studies have demonstrated that host defense peptides display anticancer activity against a number of cancers such as e.g. leukemia, prostate, ascite and ovarian tumors, yet so far none of these peptides has made it on the market. Nevertheless, optimization of host defense peptides using various strategies to enhance further selectivity and serum stability is expected to yield novel anticancer drugs with improved properties in respect of cancer cell toxicity as well as reduced development of drug resistance.  相似文献   

15.
16.
International Journal of Peptide Research and Therapeutics - Antimicrobial peptides comprise core components of innate defense and act as first-line defense molecules in most marine mollusks....  相似文献   

17.
Amphibian species have experienced population declines and extinctions worldwide that are unprecedented in recent history. Many of these recent declines have been linked to a pathogenic skin fungus, Batrachochytrium dendrobatidis, or to iridoviruses of the genus Ranavirus. One of the first lines of defense against pathogens that enter by way of the skin are antimicrobial peptides synthesized and stored in dermal granular glands and secreted into the mucus following alarm or injury. Here, I review what is known about the capacity of amphibian antimicrobial peptides from diverse amphibians to inhibit B. dendrobatidis or ranavirus infections. When multiple species were compared for the effectiveness of their in vitro antimicrobial peptides defenses against B. dendrobatidis, non-declining species of rainforest amphibians had more effective antimicrobial peptides than species in the same habitat that had recently experienced population declines. Further, there was a significant correlation between the effectiveness of the antimicrobial peptides and resistance of the species to experimental infection. These studies support the hypothesis that antimicrobial peptides are an important component of innate defenses against B. dendrobatidis. Some amphibian antimicrobial peptides inhibit ranavirus infections and infection of human T lymphocytes by the human immunodeficiency virus (HIV). An effective antimicrobial peptide defense against skin pathogens appears to depend on a diverse array of genes expressing antimicrobial peptides. The production of antimicrobial peptides may be regulated by signals from the pathogens. However, this defense must also accommodate potentially beneficial microbes on the skin that compete or inhibit growth of the pathogens. How this delicate balancing act is accomplished is an important area of future research.  相似文献   

18.
Bacterial resistance to antimicrobial peptides   总被引:1,自引:0,他引:1  
Antimicrobial peptides (AMPs) or host defense peptides (HDPs) are vital components of human innate defense system targeting human‐related bacteria. Many bacteria have various mechanisms interfering with AMP activity, causing resistance to AMPs. Since AMPs are considered as potential novel antimicrobial drugs, understanding the mechanisms of bacterial resistance to direct killing of AMPs is of great significance. In this review, a comparative overview of bacterial strategies for resistance to direct killing of various AMPs is presented. Such strategies include bacterial cell envelope modification, AMP degradation, sequestration, expelling, and capsule.  相似文献   

19.
抗菌肽是生物体抵御外界病原体侵袭时产生的一类保守的小分子多肽,是生物体内先天免疫防御机制的重要组分。抗菌肽可以选择性杀伤肿瘤细胞,而对正常细胞损害较小,已作为化、放疗药物潜在的替代品被广泛研究和开发。从抗菌肽对不同肿瘤细胞选择性作用机制、抗菌肽药物设计的发展及应用前景等方面进行综述。  相似文献   

20.
Numerous peptides exhibiting antimicrobial properties have been isolated from the skins of many amphibian species. These peptides offer an innate chemical defense system against various microbial agents that exist in the amphibian's environment. Amphibian skin peptides are typically tested for antimicrobial activity against microbial strains that are pathogenic to humans, but not on potential pathogenic or opportunistic bacteria that exist in the organism's habitat. Two peptides, a brevinin-2-related peptide and temporin-1SPb previously isolated from secretions of the mink frog, Rana septentrionalis, were tested for antimicrobial activity on bacterial isolates endemic to the frog's habitat. Ten isolates were identified, using 16S rRNA gene sequencing techniques, in the genera Pseudomonas, Serratia, Bacillus, Aeromonas, Burkholderia, Microbacterium, and Delftia. Bacterial isolates were tested with peptides at concentrations ranging from 0.8 microM to 1000 microM to determine the minimum inhibitory concentration (MIC) to inhibit growth. Growth of four of the isolates was inhibited by temporin-1SPb at the concentrations used, but all of the isolates were inhibited by the brevinin-2-related within the range of peptide concentrations used. This demonstrates the efficacy of both peptides as a component of the frog's innate chemical defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号