首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to introduce or modify protein function has widespread application to multiple scientific disciplines. The introduction of unique unnatural amino acids represents an excellent mechanism to incorporate new functionality; however, this approach is limited by ability of the translational machinery to recognize and incorporate the chemical moiety. To overcome this potential limitation, we aimed to exploit the functionality of existing unnatural amino acids to perform bioorthogonal reactions to introduce the desired protein modification, altering its function. Specifically, via the introduction of a terminal alkyne containing unnatural amino acid, we demonstrated chemically programmable protein modification through the Glaser-Hay coupling to other terminal alkynes, altering the function of a protein. In a proof-of-concept experiment, this approach has been utilized to modify the fluorescence spectrum of green fluorescent protein.  相似文献   

2.
内含肽介导的生物学效应及其应用   总被引:1,自引:1,他引:1  
蛋白质翻译产物在成熟过程中剪切释放出来的一段氨基酸序列称为“intein”---即内含肽。它与前体蛋白以框内融合的形式共同翻译,并内嵌于前体蛋白序列中。内含肽的解离以及内含肽两侧氨基酸序列的连接是在内含肽自身催化作用下完成的。本文将从内含肽的发现、结构特征和作用机理等方面对这种具有特殊意义的蛋白质成熟机制进行较为全面的论述,同时介绍了近年来发展起来的以内含肽介导的蛋白质剪接为基础的蛋白质纯化和改造技术。  相似文献   

3.
We introduce a simplified protein model where the water degrees of freedom appear explicitly (although in an extremely simplified fashion). Using thismodel we are able to recover both the warm and the cold protein denaturation within a single framework, while addressing important issues about the structure of model proteins.  相似文献   

4.
简要综述了近年来蛋白质折叠机理的理论研究。首先回顾了蛋白质折叠理论的发展历程,然后对折叠中间体的研究现状作了较详细的介绍。同时,对折叠机理理论研究中的几种理论模型和模拟算法作了细致评述,分析了其现状和存在的问题。最后,总结和讨论了折叠机理理论研究的现存问题及研究热点,并展望了该领域研究的发展趋势。  相似文献   

5.

Background  

A number of studies have used protein interaction data alone for protein function prediction. Here, we introduce a computational approach for annotation of enzymes, based on the observation that similar protein sequences are more likely to perform the same function if they share similar interacting partners.  相似文献   

6.
Despite the recognized importance of the multi-scale spatio-temporal organization of proteins, most computational tools can only access a limited spectrum of time and spatial scales, thereby ignoring the effects on protein behavior of the intricate coupling between the different scales. Starting from a physico-chemical atomistic network of interactions that encodes the structure of the protein, we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and levels of organization of proteins that span the whole range of scales, revealing biological features occurring at different levels of organization and tracking their effect across scales. Additionally, we introduce a measure of robustness to quantify the relevance of the partitions through the generation of biochemically-motivated surrogate random graph models. We apply the method to four distinct conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria parasite, and study properties that have been experimentally addressed such as the closing mechanism, the presence of conserved clusters, and the identification through computational mutational analysis of key residues for binding.  相似文献   

7.
8.
激光扫描共聚焦显微镜与普通光学显微镜相比,其分辨率高,同时具有可对样品进行非侵入性无损伤断层扫描,以及对样品形貌进行三维成建等特点,因此,可作为研究晶体生长强有利的工具。本文介绍了其在定量测量晶体的个数,重组三维图像以获得晶体生长的过程信息及测定晶体生长台阶动态变化等方面的应用。还对激光扫描共聚焦显微镜在晶体生长研究的其它方面应用前景作了展望。  相似文献   

9.
肖奕  冯建辉  黄延昭 《生命科学》2010,(11):1129-1137
进化的观点认为,蛋白质结构的对称性是基因复制和融合的结果,但是由于在长期进化过程中的氨基酸突变,绝大多数现有的蛋白质序列都失去了这种直观的重复性特征。该文简要地回顾了国际上发展的寻找蛋白质序列中重复片段的方法,重点介绍了作者自己提出的分析蛋白质序列和结构对称性的方法以及在蛋白质对称结构形成机理方面的初步工作,并系统分析了各类对称折叠子的序列与结构关系,发现它们的序列都具有隐含的与结构相同的对称性,或者说序列的对称性决定结构的对称性。  相似文献   

10.
In this paper, we introduce the 2D hexagonal lattice as a biologically meaningful alternative to the standard square lattice for the study of protein folding in the HP model. We show that the hexagonal lattice alleviates the "sharp turn" problem and models certain aspects of the protein secondary structure more realistically. We present a 1/6-approximation and a clustering heuristic for protein folding on the hexagonal lattice. In addition to these two algorithms, we also implement a Monte Carlo Metropolis algorithm and a branch-and-bound partial enumeration algorithm, and conduct experiments to compare their effectiveness.  相似文献   

11.
Ohtsuki T  Manabe T  Sisido M 《FEBS letters》2005,579(30):6769-6774
The ability to introduce non-natural amino acids into proteins opens up new vistas for the study of protein structure and function. This approach requires suppressor tRNAs that deliver the non-natural amino acid to a ribosome associated with an mRNA containing an expanded codon. The suppressor tRNAs must be absolutely protected from aminoacylation by any of the aminoacyl-tRNA synthetases in the protein synthesizing system, or a natural amino acid will be incorporated instead of the non-natural amino acid. Here, we found that some tRNAs with non-standard structures could work as efficient four-base suppressors fulfilling the above orthogonal conditions. Using these tRNAs, we successfully demonstrated incorporation of three different non-natural amino acids into a single protein.  相似文献   

12.
Yp20 is an abundant 20 kDa chromatin associated protein which has been shown to be related antigenically to genuine Hras products. Using Southwestern blots we have demonstrated that Yp20 is a DNA binding protein. It is also shown that protein Yp20 like protein HM (an abundant thermostable 20 kDa DNA binding protein isolated from mitochondria) and like the 21 kDa autonomously replicating sequence binding factor II (ABFII) is able to introduce superhelical turns into circular relaxed DNA in the presence of DNA topoisomerase I activity. We suggest that this protein may be important for chromatin structure and function.  相似文献   

13.
Short linear motifs (SLiMs) are a unique and ubiquitous class of protein interaction modules that perform key regulatory functions and drive dynamic complex formation. For decades, interactions mediated by SLiMs have accumulated through detailed low-throughput experiments. Recent methodological advances have opened this previously underexplored area of the human interactome to high-throughput protein–protein interaction discovery. In this article, we discuss that SLiM-based interactions represent a significant blind spot in the current interactomics data, introduce the key methods that are illuminating the elusive SLiM-mediated interactome of the human cell on a large scale, and discuss the implications for the field.  相似文献   

14.
Protein misfolding resulting in the formation of inclusion bodies is one of the major problems during protein overexpression in Escherichia coil. In this paper, we introduce a new method, which is simply to heat shock a cell culture prior to protein induction, allowing effective enhancement of the solubility and thereby the yield of overexpressed proteins in E. coli. Using this method, we show that the solubility of the E. coli protein KsgA-AN is significantly increased when overexpressed from a T7 promoter. In addition, we also show that the solubility of several Caenorhabditis elegans proteins are also enhanced after heat-shock treatment when expressed in E. coli. Taken together, these results suggest that the "heat-shock protocol" is a generalizable and useful method for increasing the solubility of many proteins overexpressed in E. coli.  相似文献   

15.
16.
Combining high-mass-accuracy mass spectrometry, isobaric tagging and software for multiplexed, large-scale protein quantification, we report deep proteomic coverage of four human embryonic stem cell and four induced pluripotent stem cell lines in biological triplicate. This 24-sample comparison resulted in a very large set of identified proteins and phosphorylation sites in pluripotent cells. The statistical analysis afforded by our approach revealed subtle but reproducible differences in protein expression and protein phosphorylation between embryonic stem cells and induced pluripotent cells. Merging these results with RNA-seq analysis data, we found functionally related differences across each tier of regulation. We also introduce the Stem Cell-Omics Repository (SCOR), a resource to collate and display quantitative information across multiple planes of measurement, including mRNA, protein and post-translational modifications.  相似文献   

17.
Coluzza I 《PloS one》2011,6(7):e20853
Computational studies have given a great contribution in building our current understanding of the complex behavior of protein molecules; nevertheless, a complete characterization of their free energy landscape still represents a major challenge. Here, we introduce a new coarse-grained approach that allows for an extensive sampling of the conformational space of a large number of sequences. We explicitly discuss its application in protein design, and by studying four representative proteins, we show that the method generates sequences with a relatively smooth free energy surface directed towards the target structures.  相似文献   

18.
A common way to study protein function is to deplete the protein of interest from cells and observe the response. Traditional methods involve disrupting gene expression but these techniques are only effective against newly synthesized proteins and leave previously existing and stable proteins untouched. Here, we introduce a technique that induces the rapid degradation of specific proteins in mammalian cells by shuttling the proteins to the proteasome for degradation in a ubiquitin-independent manner. We present two implementations of the system in human culture cells that can be used individually to control protein concentration. Our study presents a simple, robust, and flexible technology platform for manipulating intracellular protein levels.  相似文献   

19.
Previously we established Zygote Electroporation of Nucleases(ZEN) technology as an efficient and high-throughput way to generate genetically modified mouse models.However,there were significant variations of the targeting efficiency among different genomic loci using our previously published protocol.In this study,we improved the ZEN technology by delivering Cas9 protein into mouse zygotes through a series of electroporation.Using this approach,we were able to introduce precise nucleotide substitutions,large segment deletion and short segment insertion into targeted loci with high efficiency.  相似文献   

20.
We introduce a new type of knowledge-based potentials for protein structure prediction, called 'evolutionary potentials', which are derived using a single experimental protein structure and all three-dimensional models of its homologous sequences. The new potentials have been benchmarked against other knowledge-based potentials, resulting in a significant increase in accuracy for model assessment. In contrast to standard knowledge-based potentials, we propose that evolutionary potentials capture key determinants of thermodynamic stability and specific sequence constraints required for fast folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号