首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Molecular Biology Reports - All flowering plants have evolved through multiple rounds of polyploidy throughout the evolutionary process. Intergenomic interactions between subgenomes in polyploid...  相似文献   

2.
Protocol for the fast chromatin immunoprecipitation (ChIP) method   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
5.
6.
7.
The defining step in most chromatin immunoprecipitation (ChIP) assays is the use of an antibody to enrich for a particular protein or histone modification state associated with segments of chromatin. The specificity of the antibody is critical to the interpretation of the experiment, yet this property is rarely reported. Here, we present a quantitative method using mass spectrometry to characterize the specificity of key histone H3 modification-targeting antibodies that have previously been used to characterize the "histone code." We further extend the use of these antibody reagents to the observation of long range correlations among disparate histone modifications. Using purified human histones representing the mixture of chromatin states present in living cells, we were able to quantify the degree of target enrichment and the specificity of several commonly used, commercially available ChIP grade antibodies. We found significant differences in enrichment efficiency among various reagents directed against four frequently studied chromatin marks: H3K4me2, H3K4me3, H3K9me3, and H3K27me3. For some antibodies, we also detected significant off target enrichment of alternate modifications at the same site (i.e., enrichment of H3K4me2 by an antibody directed against H3K4me3). Through cluster analysis, we were able to recognize patterns of co-enrichment of marks at different sites on the same histone protein. Surprisingly, these co-enrichments corresponded well to "canonical" chromatin states that are exemplary of activated and repressed regions of chromatin. Altogether, our findings suggest that 1) the results of ChIP experiments need to be evaluated with caution given the potential for cross-reactivity of the commonly used histone modification recognizing antibodies, 2) multiple marks with consistent biological interpretation exist on the same histone protein molecule, and 3) some components of the histone code may be transduced on single proteins in living cells.  相似文献   

8.
ChIP-seq is an established manually-performed method for identifying DNA-protein interactions genome-wide. Here, we describe a protocol for automated high-throughput (AHT) ChIP-seq. To demonstrate the quality of data obtained using AHT-ChIP-seq, we applied it to five proteins in mouse livers using a single 96-well plate, demonstrating an extremely high degree of qualitative and quantitative reproducibility among biological and technical replicates. We estimated the optimum and minimum recommended cell numbers required to perform AHT-ChIP-seq by running an additional plate using HepG2 and MCF7 cells. With this protocol, commercially available robotics can perform four hundred experiments in five days.  相似文献   

9.
10.
11.
12.
13.
AGAMOUS-like-15 (AGL15) is a member of the MADS-domain family of DNA-binding regulatory factors that accumulates preferentially in tissue developing in an embryonic mode. To better understand how AGL15 functions, we developed a chromatin immunoprecipitation (ChIP) approach to isolate genes regulated directly by AGL15. ChIP allows purification of in vivo protein-DNA complexes. The co-purified DNA is recovered and used to isolate the putatively regulated gene. Several tests must be performed to show that the putative downstream target gene is truly regulated by the DNA-binding protein. The DNA-binding regulatory protein must interact with cis regulatory elements. The downstream gene expression pattern should respond to the level of the trans-acting regulatory factor. The cis element should be able to confer regulation in response to the trans-acting factor. We describe, in this report, our ChIP protocol, and discuss in detail, tests to confirm regulation by AGL15 for two targets identified by ChIP. These targets are referred to as Downstream Target of AGL15 (DTA1 and DTA2). Expression of DTA1, which encodes a protein with high similarity to GA-2 oxidase-like proteins, is induced by AGL15. DTA2 encodes a novel protein and expression of this target is repressed by AGL15.  相似文献   

14.
15.
Polyclonal and monoclonal antibodies specific for histones as well as sera directed against synthetic peptides of histones were used to probe the topography of chromatin subunits. In native chromatin, the regions corresponding to residues 130-135 of H3 and 6-18 of H2B were found to be exposed and able to interact with antibodies whereas the regions 26-35 and 36-43 of H2B and 80-89 and 85-102 of H4 were not. In vitro phosphorylation of H3 and H5 in native chromatin or of H3 in H1/H5-depleted chromatin led to a marked drop in the binding of antibodies specific for residues 130-135 of H3 and 6-18 of H2B. Phosphorylation of H1/H5-depleted chromatin also altered the degree of exposure of certain H2A epitopes but it did not affect the surface accessibility of residues 1-11 of H2B.  相似文献   

16.
Chromosomes in eukaryotic cell nuclei are not uniformly organized, but rather contain distinct chromatin elements, with each state having a defined biochemical structure and biological function. These are recognizable by their distinct architectures and molecular components, which can change in response to cellular stimuli or metabolic requirements. Chromatin elements are characterized by the fundamental histone and DNA components, as well as other associated non-histone proteins and factors. Post-translational modifications of histone proteins in particular often correlate with a specific chromatin structure and function. Patterns of histone modifications are implicated as having a role in directing the level of chromatin compaction, as well as playing roles in multiple functional pathways directing the readout of distinct regions of the genome. We review the properties of various chromatin elements and the apparent links of histone modifications with chromatin organization and functional output.  相似文献   

17.
18.
19.
20.
Plant genomes are earmarked with defined patterns of chromatin marks. Little is known about the stability of these epigenomes when related, but distinct genomes are brought together by intra‐species hybridization. Arabidopsis thaliana accessions and their reciprocal hybrids were used as a model system to investigate the dynamics of histone modification patterns. The genome‐wide distribution of histone modifications H3K4me2 and H3K27me3 in the inbred parental accessions Col‐0, C24 and Cvi and their hybrid offspring was compared by chromatin immunoprecipitation in combination with genome tiling array hybridization. The analysis revealed that, in addition to DNA sequence polymorphisms, chromatin modification variations exist among accessions of A. thaliana. The range of these variations was higher for H3K27me3 (typically a repressive mark) than for H3K4me2 (typically an active mark). H3K4me2 and H3K27me3 were rather stable in response to intra‐species hybridization, with mainly additive inheritance in hybrid offspring. In conclusion, intra‐species hybridization does not result in gross changes to chromatin modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号