首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
Translational activation of several dormant mRNAs in vertebrate oocytes is mediated by cytoplasmic polyadenylation, a process controlled by the cytoplasmic polyadenylation element (CPE) and its binding protein CPEB. The translation of CPE-containing mRNAs does not occur en masse at any one time, but instead is temporally regulated. We show here that in Xenopus, partial destruction of CPEB controls the temporal translation of CPE-containing mRNAs. While some mRNAs, such as the one encoding Mos, are polyadenylated at prophase I, the polyadenylation of cyclin B1 mRNA requires the partial destruction of CPEB that occurs at metaphase I. CPEB destruction is mediated by a PEST box and Cdc2-catalyzed phosphorylation, and is essential for meiotic progression to metaphase II. CPEB destruction is also necessary for mitosis in the early embryo. These data indicate that a change in the CPEB:CPE ratio is necessary to activate mRNAs at metaphase I and drive the cells' entry into metaphase II.  相似文献   

2.
Meiotic cell cycle progression during vertebrate oocyte maturation requires the correct temporal translation of maternal mRNAs encoding key regulatory proteins. The mechanism by which specific mRNAs are temporally activated is unknown, although both cytoplasmic polyadenylation elements (CPE) within the 3'-untranslated region (3'-UTR) of mRNAs and the CPE-binding protein (CPEB) have been implicated. We report that in progesterone-stimulated Xenopus oocytes, the early cytoplasmic polyadenylation and translational activation of multiple maternal mRNAs occur in a CPE- and CPEB-independent manner. We demonstrate that polyadenylation response elements, originally identified in the 3'-UTR of the mRNA encoding the Mos proto-oncogene, direct CPE- and CPEB-independent polyadenylation of an early class of Xenopus maternal mRNAs. Our findings refute the hypothesis that CPE sequences alone account for the range of temporal inductions of maternal mRNAs observed during Xenopus oocyte maturation. Rather, our data indicate that the sequential action of distinct 3'-UTR-directed translational control mechanisms coordinates the complex temporal patterns and extent of protein synthesis during vertebrate meiotic cell cycle progression.  相似文献   

3.
4.
CPEB: a life in translation   总被引:12,自引:0,他引:12  
Nearly two decades ago, Xenopus oocytes were found to contain mRNAs harboring a small sequence in their 3' untranslated regions that control cytoplasmic polyadenylation and translational activation during development. This cytoplasmic polyadenylation element (CPE) is the binding platform for CPE-binding protein (CPEB), which promotes polyadenylation-induced translation. Since then, the biochemistry and biology of CPEB has grown rather substantially: mechanistically, CPEB nucleates a complex of factors that regulates poly(A) elongation through, of all things, a deadenylating enzyme; biologically, CPEB mediates many processes including germ-cell development, cell division and cellular senescence, and synaptic plasticity and learning and memory. These observations underscore the growing complexities of CPEB involvement in cell function.  相似文献   

5.
6.
Precise control of the timing of translational activation of dormant mRNAs stored in oocytes is required for normal progression of oocyte maturation. We previously showed that Pumilio1 (Pum1) is specifically involved in the translational control of cyclin B1 mRNA during Xenopus oocyte maturation, in cooperation with cytoplasmic polyadenylation element-binding protein (CPEB). It was reported that another Pumilio, Pumilio2 (Pum2), exists in Xenopus oocytes and that this protein regulates the translation of RINGO mRNA, together with Deleted in Azoospermia-like protein (DAZL). In this study, we characterized Pum1 and Pum2 biochemically by using newly produced antibodies that discriminate between them. Pum1 and Pum2 are bound to several key proteins involved in translational control of dormant mRNAs, including CPEB and DAZL, in immature oocytes. However, Pum1 and Pum2 themselves have no physical interaction. Injection of anti-Pum1 or anti-Pum2 antibody accelerated CPEB phosphorylation, cyclin B1 translation, and oocyte maturation. Pum1 phosphorylation coincides with the dissociation of CPEB from Pum1 and the translational activation of cyclin B1 mRNA, a target of Pum1, whereas Pum2 phosphorylation occurred at timing earlier than that for Pum1. Some, but not all, of cyclin B1 mRNAs release the deadenylase PARN during oocyte maturation, whereas Pum1 remains associated with the mRNA. On the basis of these findings, we discuss the functions of Pum1 and Pum2 in translational control of mRNAs during oocyte maturation.  相似文献   

7.
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.  相似文献   

8.
Translational control by cytoplasmic polyadenylation in Xenopus oocytes   总被引:2,自引:0,他引:2  
Elongation of the poly(A) tails of specific mRNAs in the cytoplasm is a crucial regulatory step in oogenesis and early development of many animal species. The best studied example is the regulation of translation by cytoplasmic polyadenylation elements (CPEs) in the 3' untranslated region of mRNAs involved in Xenopus oocyte maturation. In this review we discuss the mechanism of translational control by the CPE binding protein (CPEB) in Xenopus oocytes as follows: Finally we discuss some of the remaining questions regarding the mechanisms of translational regulation by cytoplasmic polyadenylation and give our view on where our knowledge is likely to be expanded in the near future.  相似文献   

9.
During early development gene expression is controlled principally at the translational level. Oocytes of the surf clam Spisula solidissima contain large stockpiles of maternal mRNAs that are translationally dormant or masked until meiotic maturation. Activation of the oocyte by fertilization leads to translational activation of the abundant cyclin and ribonucleotide reductase mRNAs at a time when they undergo cytoplasmic polyadenylation. In vitro unmasking assays have defined U-rich regions located approximately centrally in the 3' UTRs of these mRNAs as translational masking elements. A clam oocyte protein of 82 kDa, p82, which selectively binds the masking elements, has been proposed to act as a translational repressor. Importantly, mRNA-specific unmasking in vitro occurs in the absence of poly(A) extension. Here we show that clam p82 is related to Xenopus CPEB, an RNA-binding protein that interacts with the U-rich cytoplasmic polyadenylation elements (CPEs) of maternal mRNAs and promotes their polyadenylation. Cloned clam p82/CPEB shows extensive homology to Xenopus CPEB and related polypeptides from mouse, goldfish, Drosophila and Caenorhabditis elegans, particularly in their RNA-binding C-terminal halves. Two short N-terminal islands of sequence, of unknown function, are common to vertebrate CPEBs and clam p82. p82 undergoes rapid phosphorylation either directly or indirectly by cdc2 kinase after fertilization in meiotically maturing clam oocytes, prior to its degradation during the first cell cleavage. Phosphorylation precedes and, according to inhibitor studies, may be required for translational activation of maternal mRNA. These data suggest that clam p82 may be a functional homolog of Xenopus CPEB.  相似文献   

10.
During early development, control of the poly(A) tail length by cytoplasmic polyadenylation is critical for the regulation of specific mRNA expression. Gld2, an atypical poly(A) polymerase, is involved in cytoplasmic polyadenylation in Xenopus oocytes. In this study, a new XGld2-interacting protein was identified: Xenopus RNA-binding motif protein 9 (XRbm9). This RNA-binding protein is exclusively expressed in the cytoplasm of Xenopus oocytes and interacts directly with XGld2. It is shown that XRbm9 belongs to the cytoplasmic polyadenylation complex, together with cytoplasmic polyadenylation element-binding protein (CPEB), cleavage and polyadenylation specificity factor (CPSF) and XGld2. In addition, tethered XRbm9 stimulates the translation of a reporter mRNA. The function of XGld2 in stage VI oocytes was also analysed. The injection of XGld2 antibody into oocytes inhibited polyadenylation, showing that endogenous XGld2 is required for cytoplasmic polyadenylation. Unexpectedly, XGld2 and CPEB antibody injections also led to an acceleration of meiotic maturation, suggesting that XGld2 is part of a masking complex with CPEB and is associated with repressed mRNAs in oocytes.  相似文献   

11.
Activity-dependent polyadenylation in neurons   总被引:4,自引:1,他引:3       下载免费PDF全文
Du L  Richter JD 《RNA (New York, N.Y.)》2005,11(9):1340-1347
Activity-dependent changes in protein synthesis modify synaptic efficacy. One mechanism that regulates mRNA translation in the synapto-dendritic compartment is cytoplasmic polyadenylation, a process controlled by CPEB, the cytoplasmic polyadenylation element (CPE)-specific RNA binding protein. In neurons, very few mRNAs are known CPEB substrates, and none appear to be responsible for the effects on plasticity that are found in the CPEB knockout mouse. These results suggest that the translation of other mRNAs is regulated by CPEB. To identify them, we have developed a functional assay based on the polyadenylation of brain-derived mRNAs injected into Xenopus oocytes, a surrogate system that carries out this 3' end processing event in an efficient manner. The polyadenylated RNAs were isolated by binding to and thermal elution from poly(U) agarose and identified by microarray analysis. Selected sequences that were positive for polyadenylation were cloned and retested for polyadenylation by injection into oocytes. These sequences were then examined for activity-dependent polyadenylation in cultured hippocampal neurons. Finally, the levels of two proteins encoded by polyadenylated mRNAs were examined in glutamate-stimulated synaptoneurosomes. These studies show that many mRNAs undergo activity-dependent polyadenylation in neurons and that this process coincides with increased translation in the synapto-dendritic compartment.  相似文献   

12.
The translational activation of several maternal mRNAs in Xenopus laevis is dependent on cytoplasmic poly(A) elongation. Messages harboring the UUUUUAU-type cytoplasmic polyadenylation element (CPE) in their 3' untranslated regions (UTRs) undergo polyadenylation and translation during oocyte maturation. This CPE is bound by the protein CPEB, which is essential for polyadenylation. mRNAs that have the poly(U)12-27 embryonic-type CPE (eCPE) in their 3' UTRs undergo polyadenylation and translation during the early cleavage and blastula stages. A 36-kDa eCPE-binding protein in oocytes and embryos has been identified by UV cross-linking. We now report that this 36-kDa protein is ElrA, a member of the ELAV family of RNA-binding proteins. The proteins are identical in size, antibody directed against ElrA immunoprecipitates the 36-kDa protein, and the two proteins have the same RNA binding specificity in vitro. C12 and activin receptor mRNAs, both of which contain eCPEs, are detected in immunoprecipitated ElrA-mRNP complexes from eggs and embryos. In addition, this in vivo interaction requires the eCPE. Although a number of experiments failed to define a role for ElrA in cytoplasmic polyadenylation, the expression of a dominant negative ElrA protein in embryos results in an exogastrulation phenotype. The possible functions of ElrA in gastrulation are discussed.  相似文献   

13.
In both vertebrates and invertebrates, the expression of several maternal mRNAs is regulated by cytoplasmic polyadenylation. In Xenopus oocytes, where most of the biochemical details of this process have been examined, polyadenylation is controlled by CPEB, a sequence-specific RNA binding protein. The activity of CPEB, which is to recruit cleavage and polyadenylation specificity factor (CPSF) and poly(A) polymerase (PAP) into an active cytoplasmic polyadenylation complex, is controlled by Eg2-catalyzed phosphorylation. Soon after CPEB phosphorylation and resulting polyadenylation take place, the interaction between maskin, a CPEB-associated factor, and eIF4E, the cap-binding protein, is destroyed, which results in the recruitment of mRNA into polysomes. Polyadenylation also occurs in maturing mouse oocytes, although the biochemical events that govern the reaction in these cells are not known. In this study, we have examined the phosphorylation of CPEB and have assessed the necessity of this protein for polyadenylation in maturing mouse oocytes. Immunohistochemistry has revealed that all the factors that control polyadenylation and translation in Xenopus oocytes (CPEB, CPSF, PAP, maskin, and IAK1, the murine homologue of Eg2) are also present in the cytoplasm of mouse oocytes. After the induction of maturation, a kinase is activated that phosphorylates CPEB on a critical regulatory residue, an event that is essential for CPEB activity. A peptide that competitively inhibits the activity of IAK1/Eg2 blocks the progression of meiosis in injected oocytes. Finally, a CPEB protein that acts as a dominant negative mutation because it cannot be phosphorylated by IAK1/Eg2, prevents cytoplasmic polyadenylation. These data indicate that cytoplasmic polyadenylation in mouse oocytes is mediated by IAK1/Eg2-catalyzed phosphorylation of CPEB.  相似文献   

14.
Cytoplasmic polyadenylation is a key mechanism controlling maternal mRNA translation in early development. In most cases, mRNAs that undergo poly(A) elongation are translationally activated; those that undergo poly(A) shortening are deactivated. Poly(A) elongation is regulated by two cis-acting sequences in the 3'-untranslated region (UTR) of responding mRNAs, the polyadenylation hexanucleotide AAUAAA and the U-rich cytoplasmic polyadenylation element (CPE). Previously, we cloned and characterized the Xenopus oocyte CPE binding protein (CPEB), showing that it was essential for the cytoplasmic polyadenylation of B4 RNA. Here, we show that CPEB also binds the CPEs of G10, c-mos, cdk2, cyclins A1, B1 and B2 mRNAs. We find that CPEB is necessary for polyadenylation of these RNAs in egg extracts, suggesting that this protein is required for polyadenylation of most RNAs during oocyte maturation. Our data demonstrate that the complex timing and extent of polyadenylation are partially controlled by CPEB binding to multiple target sites in the 3' UTRs of responsive mRNAs. Finally, injection of CPEB antibody into oocytes not only inhibits polyadenylation in vivo, but also blocks progesterone-induced maturation. This is due to inhibition of polyadenylation and translation of c-mos mRNA, suggesting that CPEB is critical for early development.  相似文献   

15.
A conserved role of a DEAD box helicase in mRNA masking.   总被引:10,自引:1,他引:9       下载免费PDF全文
Clam p82 is a member of the cytoplasmic polyadenylation element-binding protein (CPEB) family of RNA-binding proteins and serves dual functions in regulating gene expression in early development. In the oocyte, p82/CPEB is a translational repressor, whereas in the activated egg, it acts as a polyadenylation factor. Coimmunoprecipitations were performed with p82 antibodies in clam oocyte and egg lysates to identify stage-regulated accessory factors. p47 coprecipitates with p82 from oocyte lysates in an RNA-dependent manner and is absent from egg lysate p92-bound material. Clam p47 is a member of the RCK/p54 family of DEAD box RNA helicases. Xp54, the Xenopus homolog, with bona fide helicase activity, is an abundant and integral component of stored mRNP in oocytes (Ladomery et al., 1997). In oocytes, clam p47 and p82/CPEB are found in large cytoplasmic mRNP complexes. Whereas the helicase level is constant during embryogenesis, in contrast to CPEB, clam p47 translocates to nuclei at the two-cell stage. To address the role of this class of helicase in masking, Xp54 was tethered via 3' UTR MS2-binding sites to firefly luciferase, following microinjection of fusion protein and nonadenylated reporter mRNAs into Xenopus oocytes. Tethered helicase repressed luciferase translation three- to fivefold and, strikingly, mutations in two helicase motifs (DEAD--> DQAD and HRIGR-->HRIGQ), activated translation three- to fourfold, relative to MS2. These data suggest that this helicase family represses translation of maternal mRNA in early development, and that its activity may be attenuated during meiotic maturation, prior to cytoplasmic polyadenylation.  相似文献   

16.
Translational activation of dormant cyclin B1 mRNA stored in oocytes is a prerequisite for the initiation or promotion of oocyte maturation in many vertebrates. Using a monoclonal antibody against the domain highly homologous to that of Drosophila Pumilio, we have shown for the first time in any vertebrate that a homolog of Pumilio is expressed in Xenopus oocytes. This 137-kDa protein binds to the region including the sequence UGUA at nucleotides 1335-1338 in the 3'-untranslated region of cyclin B1 mRNA, which is close to but does not overlap the cytoplasmic polyadenylation elements (CPEs). Physical in vitro association of Xenopus Pumilio with a Xenopus homolog of Nanos (Xcat-2) was demonstrated by a protein pull-down assay. The results of immunoprecipitation experiments showed in vivo interaction between Xenopus Pumilio and CPE-binding protein (CPEB), a key regulator of translational repression and activation of mRNAs stored in oocytes. This evidence provides a new insight into the mechanism of translational regulation through the 3'-end of mRNA during oocyte maturation. These results also suggest the generality of the function of Pumilio as a translational regulator of dormant mRNAs in both invertebrates and vertebrates.  相似文献   

17.
18.
Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.  相似文献   

19.
Several cytoplasmic polyadenylation element (CPE)-containing mRNAs that are repressed in Xenopus oocytes become active during meiotic maturation. A group of factors that are anchored to the CPE are responsible for this repression and activation. Two of the most important are CPEB, which binds directly to the CPE, and Maskin, which associates with CPEB. In oocytes, Maskin also binds eukaryotic translation initiation factor 4E (eIF4E), an interaction that excludes eIF4G and prevents formation of the eIF4F initiation complex. When the oocytes are stimulated to reenter the meiotic divisions (maturation), CPEB promotes cytoplasmic polyadenylation. The newly elongated poly(A) tail becomes bound by poly(A) binding protein (PABP), which in turn binds eIF4G and helps it displace Maskin from eIF4E, thereby inducing translation. Here we show that Maskin undergoes several phosphorylation events during oocyte maturation, some of which are important for its dissociation from eIF4E and translational activation of CPE-containing mRNA. These sites are T58, S152, S311, S343, S453, and S638 and are phosphorylated by cdk1. Mutation of these sites to alanine alleviates the cdk1-induced dissociation of Maskin from eIF4E. Prior to maturation, Maskin is phosphorylated on S626 by protein kinase A. While this modification has no detectable effect on translation during oocyte maturation, it is critical for this protein to localize on the mitotic apparatus in somatic cells. These results show that Maskin activity and localization is controlled by differential phosphorylation.  相似文献   

20.
The release of Xenopus oocytes from prophase I arrest is largely driven by the cytoplasmic polyadenylation-induced translation of dormant maternal mRNAs. Two cis elements, the CPE and the hexanucleotide AAUAAA, and their respective binding factors, CPEB and a cytoplasmic form of CPSF, control polyadenylation. The most proximal stimulus for polyadenylation is Eg2-catalyzed phosphorylation of CPEB serine 174. Here, we show that this phosphorylation event stimulates an interaction between CPEB and CPSF. This interaction is direct, does not require RNA tethering, and occurs through the 160 kDa subunit of CPSF. Eg2-stimulated and CPE-dependent polyadenylation is reconstituted in vitro using purified components. These results demonstrate that the molecular function of Eg2-phosphorylated CPEB is to recruit CPSF into an active cytoplasmic polyadenylation complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号