共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mesenchymal stem cells from cryopreserved human umbilical cord blood 总被引:32,自引:0,他引:32
Lee MW Choi J Yang MS Moon YJ Park JS Kim HC Kim YJ 《Biochemical and biophysical research communications》2004,320(1):273-278
Umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, but the presence of mesenchymal stem cells (MSCs) in UCB has been disputed and it remains to be validated. In this study, we examined the ability of cryopreserved UCB harvests to produce cells with characteristics of MSCs. We were able to obtain homogeneous plastic adherent cells from the mononuclear cell fractions of cryopreserved UCB using our culture conditions. These adherent cell populations exhibited fibroblast-like morphology and typical mesenchymal-like immunophenotypes (CD73+, CD105+, and CD166+, etc.). These cells presented the self-renewal capacity and the mesenchymal cell-lineage potential to form bone, fat, and cartilage. Moreover, they expressed mRNAs of multi-lineage genes including SDF-1, NeuroD, and VEGF-R1, suggesting that the obtained cells had the multi-differentiation capacity as bone marrow-derived MSCs. These results indicate that cryopreserved human UCB fractions can be used as an alternative source of MSCs for experimental and therapeutic applications. 相似文献
3.
Tran Cong Toai Huynh Duy Thao Nguyen Phuong Thao Ciro Gargiulo Phan Kim Ngoc Pham Hung Van D. Michael Strong 《Cell and tissue banking》2010,11(3):269-280
It is well accepted that human umbilical cord blood (UCB) is a source of mesenchymal stem cells (MSCs) which are able to differentiate
into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes and neurons. The aim
of this study was to isolate MSCs from human UCB to determine their osteogenic potential by using different kinds of osteogenic
medium. Eventually, only those MSCs cultured in osteogenic media enriched with vitamin D2 and FGF9, were positive for osteocalcin by RT-PCR. All these cells were positive for alizarin red, alkaline phosphatase and
Von Kossa. The results obtained from RT-PCR have confirmed that osteogenesis is complete by expression of the osteocalcin
marker. In conclusion, vitamin D2, at least in vitro, may replace vitamin D3 as an osteogenic stimulator factor for MSC differentiation. 相似文献
4.
In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells 总被引:47,自引:0,他引:47
Hong SH Gang EJ Jeong JA Ahn C Hwang SH Yang IH Park HK Han H Kim H 《Biochemical and biophysical research communications》2005,330(4):1153-1161
In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases. 相似文献
5.
A novel, neural potential of non-hematopoietic human umbilical cord blood stem cells 总被引:2,自引:0,他引:2
Domanska-Janik K Buzanska L Lukomska B 《The International journal of developmental biology》2008,52(2-3):237-248
From the time of discovery that among the cord blood mononuclear cell population there are cells capable of changing their fate towards the neural lineage and producing functional neurons and macroglial cells, our attempts have been focused on the understanding of the underlying mechanism of this transition. We have deciphered the first steps of neural stem/progenitor gene induction in aggregating culture of cord blood mononuclear cells, their rapid phenotypic conversion under the influence of neuromorphogenic signals due to mitogen activation and their ability to expand and develop a prototypic, long-living line with neural stem cell properties. Evidence has accumulated that human umbilical cord-derived and neurally committed cells, due to their capacity for self-renewal, multilineage differentiation, plasticity and ability for long-lasting growth in vitro, provide unique material for the cell therapy of a wide spectrum of neurological diseases. The putative regenerating potential of these cord blood-derived neural stem/progenitor cells was evaluated after transplantation in experimental models of brain injury. In spite of initial promising data, the results indicate an urgent need to improve available animal model protocols in order to increase immuno-tolerance toward transplanted human cells. 相似文献
6.
Zenzmaier C Gesslbauer B Grobuschek N Jandrositz A Preisegger KH Kungl AJ 《Biochemical and biophysical research communications》2005,328(4):968-972
CD34+ preparations from five different umbilical cord samples were compared with respect to their proteome profile using 2-D gel electrophoresis. Fifty-two protein spots were found to match in all preparations referring to the high heterogeneity of such samples indicating a not fully developed (or instable) proteome of stem cells. All matching spots were subjected to in-gel digestion and nano-LC-MS/MS sequence analysis, from which 22 proteins were unambiguously identified. 相似文献
7.
Wei Jin Yi-qiao Xing An-huai Yang 《In vitro cellular & developmental biology. Animal》2009,45(7):321-327
Results of recent investigations have demonstrated the plasticity of mesenchymal stem cells (MSC) can differentiate into neural
lineages. In this study, we explored the experimental condition of differentiation into neuron-like cells or rhodopsin (RHOS)-positive
cells induced by epidermal growth factor (EGF) and taurine in vitro and to investigate their biological characteristics. MSC
were obtained from umbilical cord blood (UCB) of term deliveries. Cultured cells were treated with Dulbecco’s modified Eagle’s
medium/F12 (pH 7.0–7.2) supplemented with 30 ng/ml EGF. After the third cell passage, the cells were trysinized and analyzed
with a flow cytometer using the following monocloned antibodies: CD90, CD29, CD34, CD44, and CD45. Taking another MSC of the
third passage, its basal medium was replaced with alpha minimum essential medium supplemented with taurine (50 μmol/L). Cells
were cultured for an additional 8–10 d, fixed, and then immunocytochemically analyzed. Primary antibodies included the following:
neuron-specific enolase (NSE), RHOS, and nestin. In our study, we isolated a cell population derived from UCB, which possesses
morphological characteristics similar to those of MSC isolated from bone marrow. In the cytometric analysis, MSC did not present
labeling for the hematopoietic line (CD34 and CD45) and were positive for CD29, CD44, and CD90. After induction by taurine,
80.5 ± 16.2% of the cell population expressed NSE, 36.8 ± 9.6% expressed RHOS, and 29.6 ± 9.3% expressed Nestin, while only
7.9 ± 3.5% expressed NSE in the control group. This study demonstrates that partial MSC induced by taurine and EGF can differentiate
into neuron-like cells or RHOS-positive cells in vitro, which may provide a promising therapeutic strategy for the treatment
of some forms of retinal degeneration. 相似文献
8.
The osteogenic capacity of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) has been demonstrated both in vitro and in vivo. Therefore, cell labeling and storage are becoming necessary for researching the potential therapeutic use of UCB-MSCs for bone tissue engineering. The aim of this study was to determine the effect of cryopreservation on the osteogenic differentiation of green fluorescent protein (GFP)-marked UCB-MSCs in vitro. MSCs were isolated from full-term human UCB, expanded, transfected with the GFP gene, and then cryopreserved in liquid nitrogen for 4 weeks. After thawing, cell surface antigen markers and osteogenic potential were analyzed, and the luminescence of these cells was observed by fluorescence microscopy. The results demonstrate that cryopreservation has no effect on the cell phenotype, GFP expression or osteogenic differentiation of UCB-MSCs, showing that cryopreserved GFP-labeled UCB-MSCs might be applied for bone tissue engineering. 相似文献
9.
Halasa M Baskiewicz-Masiuk M Dabkowska E Machalinski B 《Folia histochemica et cytobiologica / Polish Academy of Sciences, Polish Histochemical and Cytochemical Society》2008,46(2):239-243
The identification in murine bone marrow (BM) of very small embryonic-like (VSEL) stem cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the human umbilical cord blood (UCB). Here our approach to purify VSEL from human UCB is described by employing a two step isolation strategy based on i) hypotonic lysis of erythrocytes followed ii) by multi-parameter FACS sorting. Accordingly, first, erythrocytes are removed from the UCB samples by hypotonic ammonium chloride solution and next, the UCB mononuclear cells (UCB MNC) are stained with monoclonal antibodies against all hematopoietic lineages including the common leukocyte antigen CD45. The cells carrying these markers (lin+CD45+) are eliminated from the sort by electronic gating. At the same time the antibodies against CXCR4, CD34 and CD133 are employed as positive markers to enrich the UCB MNC for VSEL. This combined two step approach enables to purify VSEL stem cells, which are small and express mRNA for pluripotent stem cells (PSC) (Oct-4 and Nanog) and tissue-committed stem cells (TCSC) (Nkx2.5/Csx, VE-cadherin and GFAP) similarly to those isolated from the adult BM (3-5 microm cells with large nuclei). 相似文献
10.
In vitro differentiation of mesenchymal progenitor cells derived from porcine umbilical cord blood 总被引:1,自引:0,他引:1
Kumar BM Yoo JG Ock SA Kim JG Song HJ Kang EJ Cho SK Lee SL Cho JH Balasubramanian S Rho GJ 《Molecules and cells》2007,24(3):343-350
Mesenchymal stem/progenitor cells (MPCs) were isolated from porcine umbilical cord blood (UCB) and their morphology, proliferation, cell cycle status, cell-surface antigen profile and expression of hematopoietic cytokines were characterized. Their capacity to differentiate in vitro into osteocytes, adipocytes and chondrocytes was also evaluated. Primary cultures of adherent porcine MPCs (pMPCs) exhibited a typical fibroblast-like morphology with significant renewal capacity and proliferative ability. Subsequent robust cell growth was indicated by the high percentage of quiescent (G0/G1) cells. The cells expressed the mesenchymal surface markers, CD29, CD49b and CD105, but not the hematopoietic markers, CD45 and CD133 and synthesized hematopoietic cytokines. Over 21 days of induction, the cells differentiated into osteocytes adipocytes and chondrocytes. The expression of lineage specific genes was gradually upregulated during osteogenesis, adipogenesis and chondrogenesis. We conclude that porcine umbilical cord blood contains a population of MPCs capable of self-renewal and of differentiating in vitro into three classical mesenchymal lineages. 相似文献
11.
Tran Cong Toai Huynh Duy Thao Ciro Gargiulo Nguyen Phuong Thao Tran Thi Thanh Thuy Huynh Minh Tuan Nguyen Thanh Tung Luis Filgueira D. Micheal Strong 《Cell and tissue banking》2011,12(2):125-133
There have been many attempts to acquire and culture human keratinocytes for clinical purposes including from keratotome slices
in media with fetal calf serum (FCS) or pituitary extract (PE), from skin specimens in media with feeder layers, from suction
blister epidermal roofs’ in serum-free culture and from human umbilical cord blood (hUCB) mesenchymal stem cells (MSCs) in
media with skin feeder layers. Conversely this study was designed to investigate whether keratinocytes could be obtained directly
from hUCB MSCs in vitro. It is widely established that mesenchymal stem cells from human umbilical cord blood have multipotent
capacity and the ability to differentiate into disparate cell lineages hUCB MSCs were directly induced to differentiate into
keratinocytes by using a specific medium composed of primary culture medium (PCM) and serum free medium (SFM) in a ratio 1:9
for a period of 7 days and tested by immunostain p63 and K1-K10. Cells thus cultured were positive in both tests, confirming
the possibility to directly obtain keratinocytes from MSCs hUCB in vitro. 相似文献
12.
In vitro differentiation of human embryonic neural stem cells 总被引:1,自引:1,他引:1
13.
Lee MW Moon YJ Yang MS Kim SK Jang IK Eom YW Park JS Kim HC Song KY Park SC Lim HS Kim YJ 《Biochemical and biophysical research communications》2007,358(2):637-643
Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types, including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications. 相似文献
14.
Lee JY Nam H Park YJ Lee SJ Chung CP Han SB Lee G 《In vitro cellular & developmental biology. Animal》2011,47(2):157-164
Platelet-rich plasma (PRP) is an emerging therapeutic application because PRP contains various growth factors that have beneficial effects on tissue regeneration and engineering. Mesenchymal stem cells and PRP derived from peripheral blood have been well studied. In this study, we investigated the effects of PRP derived from human umbilical cord blood (UCB-PRP) on proliferation, alkaline phosphatase (ALP) activity, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs), dental pulp stem cells (DPSCs), and periodontal ligament stem cells (PDLSCs). Three types of dental stem cells were primarily isolated and characterized by flow cytometric analysis. Dental stem cells were exposed to various concentrations of UCB-PRP, which resulted in the proliferation of dental stem cells. Treatment with 2% UCB-PRP resulted in the highest level of proliferation. The ALP activity of DPSCs and PDLSCs increased following treatment with UCB-PRP in a dose-dependent manner up to a concentration of 2%. ALP activity decreased with higher concentration of UCB-PRP. The effects of UCB-PRP on calcium deposition were similar to those on proliferation and ALP activity. Treatment with 2% UCB-PRP resulted in the highest calcium depositions in DPSCs and PDLSCs; however, treatment with 1% UCB-PRP resulted in the highest calcium deposition in SHEDs. The concentrations of platelet-derived growth factor-AB and transforming growth factor-β1 in UCB-PRP were investigated and found to be comparable to the amounts in peripheral blood. Overall, UCB-PRP had beneficial effects on the proliferation and osteogenic differentiation of dental stem cells. Determination of the optimal concentration of UCB-PRP requires further investigation for clinical applications. 相似文献
15.
16.
Background
There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. 相似文献17.
Sibov TT Severino P Marti LC Pavon LF Oliveira DM Tobo PR Campos AH Paes AT Amaro E F Gamarra L Moreira-Filho CA 《Cytotechnology》2012,64(5):511-521
Isolation of mesenchymal stem cells (MSCs) from umbilical cord blood (UCB) from full-term deliveries is a laborious, time-consuming process that results in a low yield of cells. In this study we identified parameters that can be helpful for a successful isolation of UCB-MSCs. According to our findings, chances for a well succeeded isolation of these cells are higher when MSCs were isolated from UCB collected from normal full-term pregnancies that did not last over 37 weeks. Besides the duration of pregnancy, blood volume and storage period of the UCB should also be considered for a successful isolation of these cells. Here, we found that the ideal blood volume collected should be above 80 mL and the period of storage should not exceed 6 h. We characterized UCB-MSCs by morphologic, immunophenotypic, protein/gene expression and by adipogenic differentiation potential. Isolated UCB-MSCs showed fibroblast-like morphology and the capacity of differentiating into adipocyte-like cells. Looking for markers of the undifferentiated status of UCB-MSCs, we analyzed the UCB-MSCs’ protein expression profile along different time periods of the differentiation process into adipocyte-like cells. Our results showed that there is a decrease in the expression of the markers CD73, CD90, and CD105 that correlates to the degree of differentiation of UCB-MSCs We suggest that CD90 can be used as a mark to follow the differentiation commitment degree of MSCs. Microarray results showed an up-regulation of genes related to the adipogenesis process and to redox metabolism in the adipocyte-like differentiated MSCs. Our study provides information on a group of parameters that may help with successful isolation and consequently with characterization of the differentiated/undifferentiated status of UCB-MSCs, which will be useful to monitor the differentiation commitment of UCB-MSC and further facilitate the application of those cells in stem-cell therapy. 相似文献
18.
19.
Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue 总被引:4,自引:0,他引:4
Rebelatto CK Aguiar AM Moretão MP Senegaglia AC Hansen P Barchiki F Oliveira J Martins J Kuligovski C Mansur F Christofis A Amaral VF Brofman PS Goldenberg S Nakao LS Correa A 《Experimental biology and medicine (Maywood, N.J.)》2008,233(7):901-913
Mesenchymal stem cells (MSCs) have been investigated as promising candidates for use in new cell-based therapeutic strategies such as mesenchyme-derived tissue repair. MSCs are easily isolated from adult tissues and are not ethically restricted. MSC-related literature, however, is conflicting in relation to MSC differentiation potential and molecular markers. Here we compared MSCs isolated from bone marrow (BM), umbilical cord blood (UCB), and adipose tissue (AT). The isolation efficiency for both BM and AT was 100%, but that from UCB was only 30%. MSCs from these tissues are morphologically and immunophenotypically similar although their differentiation diverges. Differentiation to osteoblasts and chondroblasts was similar among MSCs from all sources, as analyzed by cytochemistry. Adipogenic differentiation showed that UCB-derived MSCs produced few and small lipid vacuoles in contrast to those of BM-derived MSCs and AT-derived stem cells (ADSCs) (arbitrary differentiation values of 245.57 +/- 943 and 243.89 +/- 145.52 mum(2) per nucleus, respectively). The mean area occupied by individual lipid droplets was 7.37 mum(2) for BM-derived MSCs and 2.36 mum(2) for ADSCs, a finding indicating more mature adipocytes in BM-derived MSCs than in treated cultures of ADSCs. We analyzed FAPB4, ALP, and type II collagen gene expression by quantitative polymerase chain reaction to confirm adipogenic, osteogenic, and chondrogenic differentiation, respectively. Results showed that all three sources presented a similar capacity for chondrogenic and osteogenic differentiation and they differed in their adipogenic potential. Therefore, it may be crucial to predetermine the most appropriate MSC source for future clinical applications. 相似文献
20.
Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation 总被引:27,自引:0,他引:27
Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium. The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology, a large expansive potential, and cell cycle characteristics including a subset of quiescent cells. In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic, osteogenic and chondrogenic lineages. Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells, which uniformly expressed CD29, CD44, CD73, CD105, CD166, laminin, fibronectin and vimentin while being negative for expression of CD31, CD34, CD45 and m-smooth muscle actin. Most importantly, immuno-phenotypic analyses demonstrated that these cells expressed class Ⅰ major histocompatibility complex (MHC-I), but they did not express MHC-Ⅱ molecules. Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli. This strongly implies that they may have potential application in allograft transplantation. Since placenta and UCB are homogeneous, the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients. 相似文献