首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth hormone-binding protein (GHBP) is complexed to a substantial fraction of circulating GH. In humans, rabbits, and other species, GHBP derives from proteolytic shedding of the GH receptor (GHR) extracellular domain. In cell culture studies, stimuli such as phorbol ester, platelet-derived growth factor, or serum induce GHR proteolysis, which concomitantly yields shed GHBP in cell supernatants and a cell-associated cytoplasmic domain-containing GHR remnant. This process is sensitive to metalloprotease inhibition, and genetic reconstitution studies identify tumor necrosis factor-alpha converting enzyme (TACE/ADAM-17), a transmembrane metalloprotease, as a GHR sheddase. Stimuli that induce GHR proteolysis render cells less responsive to GH, but the mechanism(s) of this desensitization is not yet understood. In this study, we mapped the rabbit (rb) GHR cleavage site. We adenovirally expressed a C-terminal epitope-tagged rbGHR lacking most of its cytoplasmic domain, purified the remnant protein induced by the phorbol ester, PMA, and derived the cleavage site by N-terminal sequencing of the purified remnant. The N-terminal sequence, (239)FTCEEDFR(246), matched perfectly the rbGHR and suggests that cleavage occurs eight residues from the membrane in the proximal extracellular domain stem region. Deletion and alanine substitution mutagenesis indicated that, similar to other TACE substrates, the spacing of residues in this region, more than their identity, influences GHR cleavage susceptibility. Further, we determined that PMA pretreatment desensitized a cleavage-sensitive GHR mutant, but not a cleavage-insensitive mutant, to GH-induced JAK2 activation. These results suggest that inducible GHR proteolysis can regulate GH signaling.  相似文献   

2.
Growth hormone (GH) initiates its cellular action by properly dimerizing GH receptor (GHR). A substantial fraction of circulating GH is complexed with a high-affinity GH-binding protein (GHBP) that in many species can be generated by GHR proteolysis and shedding of the receptor's ligand-binding extracellular domain. We previously showed that this proteolysis 1) can be acutely promoted by the phorbol ester phorbol 12-myristate 13-acetate (PMA), 2) requires a metalloprotease activity, 3) generates both shed GHBP and a membrane-associated GHR transmembrane/cytoplasmic domain remnant, and 4) results in down-regulation of GHR abundance and GH signaling. Using cell culture model systems, we now explore the effects of GH treatment on inducible GHR proteolysis and GHBP shedding. In human IM-9 lymphocytes, which endogenously express GHRs, and in Chinese hamster ovary cells heterologously expressing wild-type or cytoplasmic domain internal deletion mutant rabbit GHRs, brief exposure to GH inhibited PMA-induced GHR proteolysis (receptor loss and remnant accumulation) by 60-93%. PMA-induced shedding of GHBP from Chinese hamster ovary transfectants was also inhibited by 70% in the presence of GH. The capacity of GH to inhibit inducible GHR cleavage did not rely on JAK2-dependent GH signaling, as evidenced by its continued protection in JAK2-deficient gamma2A rabbit GHR cells. The GH concentration dependence for inhibition of PMA-induced GHR proteolysis paralleled that for its promotion of receptor dimerization (as monitored by formation of GHR disulfide linkage). Unlike GH, the GH antagonist, G120K, which binds to but fails to properly dimerize GHRs, alone did not protect against PMA-induced GHR proteolysis; G120K did, however, antagonize the protective effect of GH. Our data suggest that GH inhibits PMA-induced GHR proteolysis and GHBP shedding by inducing GHR dimerization and that this effect does not appear to be related to GH site 1 binding, GHR internalization, or GHR signaling. The implications of these findings with regard to GH signaling and GHR down-regulation are discussed.  相似文献   

3.
Release of soluble growth hormone binding protein (GHBP) corresponding to the extracellular domain of the GH receptor (GHR) occurs via distinct mechanisms depending on species. In human, proteolysis of full length GHR results in liberation of GHBP into the extracellular medium. A putative protease responsive for GHR cleavage has been identified, however, the residues involved are still unknown. In this study, using the mutational approach to the extracellular domain of the human GHR, we demonstrated that deletion of three residues located close to the transmembrane domain abolishes constitutive GHBP shedding without change in cellular GH binding. Deletion also significantly decreased the phorbol 12-myristate 13-acetate (PMA)-induced release of GHBP and the accumulation of membrane-anchored remnant proteins. Taken together, these results suggest that integrity of the juxtamembrane region of GHR is necessary for its biochemical cleavage and that a common mechanism is involved in constitutive and PMA-induced shedding.  相似文献   

4.
5.
Growth hormone receptor (GHR) is a cytokine receptor superfamily member that binds growth hormone (GH) via its extracellular domain and signals via interaction of its cytoplasmic domain with JAK2 and other signaling molecules. GHR is a target for inducible metalloprotease-mediated cleavage in its perimembranous extracellular domain, a process that liberates the extracellular domain as the soluble GH-binding protein and leaves behind a cell-associated GHR remnant protein containing the transmembrane and cytoplasmic domains. GHR metalloproteolysis can be catalyzed by tumor necrosis factor-alpha-converting enzyme (ADAM-17) and is associated with down-modulation of GH signaling. We now study the fate of the GHR remnant protein. By anti-GHR cytoplasmic domain immunoblotting, we observed that the remnant induced in response to phorbol ester or platelet-derived growth factor has a reliable pattern of appearance and disappearance in both mouse preadipocytes endogenously expressing GHR and transfected fibroblasts expressing rabbit GHR. Lactacystin, a specific proteasome inhibitor, did not appreciably change the time course of remnant appearance or clearance but allowed detection of the GHR stub, a receptor fragment slightly smaller than the remnant but containing the C terminus of the remnant (receptor cytoplasmic domain). In contrast, MG132, another (less specific) proteasome inhibitor, strongly inhibited remnant clearance and prevented stub appearance. Inhibitors of gamma-secretase, an aspartyl protease, also prevented the appearance of the stub, even in the presence of lactacystin, and concomitantly inhibited remnant clearance in the same fashion as MG132. In addition, mouse embryonic fibroblasts derived from presenilin 1 and 2 (PS1/2) knockouts recapitulated the gamma-secretase inhibitor studies, as compared with their littermate controls (PS1/2 wild type). Confocal microscopy indicated that the GHR cytoplasmic domain became localized to the nucleus in a fashion dependent on PS1/2 activity. These data indicate that the GHR is subject to sequential proteolysis by metalloprotease and gamma-secretase activities and may suggest GH-independent roles for the GHR.  相似文献   

6.
7.
GH receptor (GHR) undergoes regulated proteolysis by both metalloprotease (α-secretase) and γ-secretase activities. α-Secretase activity regulates GHR availability and sensitivity and generates circulating GH binding protein. The function of γ-secretase cleavage is yet uncertain. We investigated GHR determinants that affect inducible sequential α- and γ-secretase cleavage and thus remnant and stub generation, respectively. Purification and N-terminal sequencing of the stub revealed that γ-secretase cleavage occurs at an ε-site in GHR’s transmembrane domain four residues from the intracellular domain. Mutagenesis revealed that deletion of the proximal two transmembrane residues prevented both α- and γ-secretase-mediated proteolysis and deletion of four residues around the ε-site precluded surface GHR expression and proteolysis. However, point mutations in and around the ε-site affected neither α- or γ-secretase cleavage. We conclude that both cleavages likely occur at the cell surface and sequentially (α-secretase followed by γ-secretase) and that ε-site cleavage by γ-secretase does not require a consensus sequence.  相似文献   

8.
The GH receptor (GHR) mediates GH effects by activating the GHR-associated cytoplasmic tyrosine kinase, Janus kinase 2. Recent studies indicate that GHRs exist as dimers independently of GH binding. Some authors suggest that receptor predimerization is mediated by the transmembrane domain (TMD) and that GH binding initiates signaling by triggering changes in the orientation of the two GHRs within the dimer. In this study, we investigate the role of GHR TMD in GH-independent receptor dimerization and ligand-induced activation. We prepared a GHR mutant, GHR(LDLR), in which the TMD is replaced with the TMD of the human low-density lipoprotein receptor (LDLR). The resultant chimera has a TMD two residues shorter than the native GHR TMD; thus, in addition to possessing a different TMD, the altered GHR(LDLR) TMD helical register may change positions of the GHR extracellular domain (ECD) and intracellular domain relative to the TMD when compared with the wild-type (WT) receptor. When each was coexpressed with an intracellular domain-truncated GHR mutant, GHR(1-274-Myc), both WT GHR and GHR(LDLR) were specifically coprecipitated with GHR(1-274-Myc), indicating that the GHR TMD was not required for GHR heterodimerization with GHR(1-274-Myc). We further examined the contribution of the so-called "dimerization interface," a GHR ECD region that is critical for GH-induced signaling, to receptor predimerization. Coimmunoprecipitation experiments with either WT GHR, a dimerization interface mutant (GHR-H150D), or a control mutant (GHR-T147D) with GHR(1-274-Myc) showed dramatically reduced coprecipitation of GHR-H150D with GHR(1-274-Myc) when compared with WT GHR or GHR-T147K. This result suggests that, in contrast to some recent models, the dimerization interface contributes to GHR predimerization. We also compared WT GHR with GHR(LDLR) and GHR(LDLRDelta4) (a chimera in which the LDLR TMD has an internal deletion of four residues) with regard to response to GH stimulation. Although the chimeras had similar GH dose responses and time courses for signaling as WT GHR, they were markedly less sensitive to inhibition of signaling by a conformation-sensitive GHR ECD monoclonal antibody. Further, the chimeras were much less sensitive to inducible metalloprotease cleavage than was WT GHR, implying that the ECD conformations of the chimera receptors differ from WT GHR. Collectively, our data indicate that the composition and/or length of the TMD affect some aspects of GHR function, but do not affect receptor predimerization or GH-induced GHR activation. Further, they suggest that the GHR ECD-TMD is more flexible than previously thought in terms of the ability to achieve the active conformation in response to GH.  相似文献   

9.
10.
The colony-stimulating factor 1 (CSF-1) receptor is a protein-tyrosine kinase that regulates cell division, differentiation, and development. In response to phorbol 12-myristate 13-acetate (PMA), the CSF-1 receptor is subject to proteolytic processing. Use of chimeric receptors indicates that the CSF-1 receptor is cleaved at least two times, once in the extracellular domain and once in the transmembrane domain. Cleavage in the extracellular domain results in ectodomain shedding while the cytoplasmic domain remains associated with the membrane. Intramembrane cleavage depends on the sequence of the transmembrane domain and results in the release of the cytoplasmic domain. This process can be blocked by gamma-secretase inhibitors. The cytoplasmic domain localizes partially to the nucleus, displays limited stability, and is degraded by the proteosome. CSF-1 receptors are continuously subject to down-modulation and regulated intramembrane proteolysis (RIP). RIP is stimulated by granulocyte-macrophage-CSF, CSF-1, interleukin-2 (IL-2), IL-4, lipopolysaccharide, and PMA and may provide the CSF-1 receptor with an additional mechanism for signal transduction.  相似文献   

11.
IGF-I deficiency may be primary due to defective synthesis, or secondary to GH receptor deficiency (GHRD) or defects in transduction of the GH-GHR signal. Cloning and sequencing of the GHR led to recognition that circulating GH binding protein (GHBP) was structurally identical to the extra-cellular domain of the GHR, and the identification of 33 mutations of the GHR in approximately half of the 250 patients that have been reported. This review explores the information provided about GHR function by various mutations, the population distribution of GHRD, the effects of this condition on mortality, growth, development, and metabolism, the effects of replacement therapy with recombinant human IGF-I, diagnostic issues, and the question of partial GH resistance.  相似文献   

12.
13.
The p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor superfamily of receptors, undergoes multiple proteolytic cleavage events. These events are initiated by an alpha-secretase-mediated release of the extracellular domain followed by a gamma-secretase-mediated intramembrane cleavage. However, the specific determinants of p75(NTR) cleavage events are unknown. Many other substrates of gamma-secretase cleavage have been identified, including Notch, amyloid precursor protein, and ErbB4, indicating there is broad substrate recognition by gamma-secretase. Using a series of deletion mutations and chimeric receptors of p75(NTR) and the related Fas receptor, we have identified domains that are essential for p75(NTR) proteolysis. The initial alpha-secretase cleavage was extracellular to the transmembrane domain. Unfortunately, deletion mutants were not capable of defining the requirements of ectodomain shedding. Although this cleavage is promiscuous with respect to amino acid sequence, its position with respect to the transmembrane domain is invariant. The generation of chimeric receptors exchanging different domains of noncleavable Fas receptor with p75(NTR), however, revealed that a discrete domain above the membrane is sufficient for efficient cleavage of p75(NTR). Mass spectrometric analysis confirmed the cleavage can occur with a truncated p75(NTR) displaying only 15 extracellular amino acids in the stalk region.  相似文献   

14.
We have investigated the interaction between GH (growth hormone) and GHR (GH receptor). We previously demonstrated that a truncated GHR that possesses a transmembrane domain but no cytoplasmic domain blocks receptor signalling. Based on this observation we investigated the impact of tethering the receptor''s extracellular domain to the cell surface using a native lipid GPI (glycosylphosphatidylinositol) anchor. We also investigated the effect of tethering GH, the ligand itself, to the cell surface and demonstrated that tethering either the ecGHR (extracellular domain of GHR) or the ligand itself to the cell membrane via a GPI anchor greatly attenuates signalling. To elucidate the mechanism for this antagonist activity, we used confocal microscopy to examine the fluorescently modified ligand and receptor. GH–GPI was expressed on the cell surface and formed inactive receptor complexes that failed to internalize and blocked receptor activation. In conclusion, contrary to expectation, tethering an agonist to the cell surface can generate an inactive hormone receptor complex that fails to internalize.  相似文献   

15.
The growth hormone (GH) receptor (GHR) binds GH in its extracellular domain and transduces activating signals via its cytoplasmic domain. Both GH-induced GHR dimerization and JAK2 tyrosine kinase activation are critical in initiation of GH signaling. We previously described a rapid GH-induced disulfide linkage of GHRs in human IM-9 cells. In this study, three GH-induced phenomena (GHR dimerization, GHR disulfide linkage, and enhanced GHR-JAK2 association) were examined biochemically and immunologically. By using the GH antagonist, G120K, and an antibody recognizing a dimerization-sensitive GHR epitope, we demonstrated that GH-induced GHR disulfide linkage reflects GH-induced GHR dimerization. GH, not G120K, promoted both GHR disulfide linkage and enhanced association with JAK2. Measures that diminished GH-dependent JAK2 and GHR tyrosine phosphorylation diminished neither GH-induced GHR disulfide linkage nor GH-enhanced GHR-JAK2 association. By using both transient and stable expression systems, we determined that cysteine 241 (an unpaired extracellular cysteine) was critical for GH-induced GHR disulfide linkage; however, GH-induced GHR dimerization, GHR-JAK2 interaction, and GHR, JAK2, and STAT5 tyrosine phosphorylation still proceeded when this cysteine residue was mutated. We conclude GH-induced GHR disulfide linkage is not required for GHR dimerization, and activation and GH-enhanced GHR-JAK2 association depends more on GHR dimerization than on GHR and/or JAK2 tyrosine phosphorylation.  相似文献   

16.
GH specifically interacts with a soluble binding protein in serum. The GH-binding protein (GHBP) has been shown to contain the extracellular portion of the cell surface GH receptor (GHR). In rats and mice there is a unique mRNA that encodes the GHBP. This mRNA contains an alternatively spliced exon that replaces the transmembrane and intracellular domains of the receptor with a short hydrophilic carboxy-terminus of 17 and 25 amino acids, respectively, in rats and mice. In humans and other species no mRNAs encoding the GHBP have been identified, suggesting that the GHBP is in these cases a proteolytically processed GHR. In this study a monoclonal antibody (GHBP 4.3) was raised to the rat GHBP using as immunogen a synthetic peptide containing the unique C-terminal 17 amino acids that are not found in the rat GHR. As predicted, this antibody is specific to rat GHBP and does not cross-react with rat GHR. In combination with polyclonal and monoclonal antibodies that recognize both GHBP and GHR, this antibody was used to show that all, or most, of the GHBP in rat serum is indeed derived from the alternatively spliced GHBP mRNA and not from proteolytic processing of the GHR. In addition, endogenous rat serum GHBP was found to exist in two forms, with apparent mol wt of 52 and 44 kDa, arising from a single protein core of 32 kDa by extensive glycosylation. The concentrations of GHBP in male and female rat plasma were also estimated to be 300 and 575 ng/ml, respectively (measured in nonglycosylated GHBP equivalents).  相似文献   

17.
GH receptor (GHR) is a single membrane-spanning glycoprotein dimer that binds GH in its extracellular domain (ECD). GH activates the GHR intracellular domain (ICD)-associated tyrosine kinase, JAK2, which causes intracellular signaling. We previously found that plasma membrane (PM)-associated GHR was dramatically enriched in the lipid raft (LR) component of the membrane and that localization of GHR within PM regions may regulate GH signaling by influencing the profile of pathway activation. In this study, we examined determinants of LR localization of the GHR using a reconstitution system which lacks endogenous JAK2 and GHR. By non-detergent extraction and multistep fractionation, we found that GHR was highly enriched in the LR fraction independent of JAK2 expression. Various GHR mutants were examined in transfectants harboring JAK2. LR concentration was observed for a GHR in which the native transmembrane domain (TMD) is replaced by that of the unrelated LDL receptor and for a GHR that lacks its ICD. Thus, LR association requires neither the TMD nor the ICD. Similarly, a GHR that lacks the ECD, except for the membrane-proximal ECD stem region, was only minimally LR-concentrated. Mutants with internal stem deletions in the context of the full-length receptor were LR-concentrated similar to the wild-type. A GHR lacking ECD subdomain 1 reached the PM and was LR-concentrated, while one lacking ECD subdomain 2, also reached the PM, but was not LR-concentrated. These data suggest LR targeting resides in ECD subdomain 2, a region relatively uninvolved in GH binding.  相似文献   

18.
Growth hormone (GH) can stimulate bone and carti-lage cell proliferation and influence carbohydrate and lipidmetabolism. The binding of GH to its specific receptor(GHR) on the surface of target cells will induce dimeriza-tion of GHR, which allows the cytoplasmic region of GHRto interact and trigger downstream signaling and geneexpression [1,2]. GHR belongs to the cytokine receptor superfamily, andis expressed in many tissues such as the liver, muscle,adipose tissue, cartilage, and brain…  相似文献   

19.
Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号