首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 +/- 0.2 to 29.8 +/- 0.6 degrees C; P < 0.001) and increased mean arterial blood pressure (85 +/- 2 to 93 +/- 3 mmHg; P < 0.001) without changing MSNA (P = 0.47) or heart rate (P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (-3.54 +/- 0.29 units.beat(-1).mmHg(-1)) was not significantly different from normothermic conditions (-2.94 +/- 0.21 units.beat(-1).mmHg(-1); P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the "operating point" of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.  相似文献   

2.
We tested the hypothesis that orthostatic stress would modulate the arterial baroreflex (ABR)-mediated beat-by-beat control of muscle sympathetic nerve activity (MSNA) in humans. In 12 healthy subjects, ABR control of MSNA (burst incidence, burst strength, and total activity) was evaluated by analysis of the relation between beat-by-beat spontaneous variations in diastolic blood pressure (DAP) and MSNA during supine rest (CON) and at two levels of lower body negative pressure (LBNP: -15 and -35 mmHg). At -15 mmHg LBNP, the relation between burst incidence (bursts per 100 heartbeats) and DAP showed an upward shift from that observed during CON, but the further shift seen at -35 mmHg LBNP was only marginal. The relation between burst strength and DAP was shifted upward at -15 mmHg LBNP (vs. CON) and further shifted upward at -35 mmHg LBNP. At -15 mmHg LBNP, the relation between total activity and DAP was shifted upward from that obtained during CON and further shifted upward at -35 mmHg LBNP. These results suggest that ABR control of MSNA is modulated during orthostatic stress and that the modulation is different between a mild (nonhypotensive) and a moderate (hypotensive) level of orthostatic stress.  相似文献   

3.
4.
To identify whether muscle metaboreceptor stimulation alters baroreflex control of muscle sympathetic nerve activity (MSNA), MSNA, beat-by-beat arterial blood pressure (Finapres), and electrocardiogram were recorded in 11 healthy subjects in the supine position. Subjects performed 2 min of isometric handgrip exercise at 40% of maximal voluntary contraction followed by 2.5 min of posthandgrip muscle ischemia. During muscle ischemia, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.001) during posthandgrip muscle ischemia (-201.9 +/- 20.4 units. beat(-1). mmHg(-1)) when compared with control conditions (-142.7 +/- 17.3 units. beat(-1). mmHg(-1)). No significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. However, both curves shifted during postexercise ischemia to accommodate the elevation in blood pressure and MSNA that occurs with this condition. These data suggest that the sensitivity of baroreflex modulation of MSNA is elevated by muscle metaboreceptor stimulation, whereas the sensitivity of baroreflex of modulate heart rate is unchanged during posthandgrip muscle ischemia.  相似文献   

5.
To examine how long-lasting microgravity simulated by 6 degrees head-down bed rest (HDBR) induces changes in the baroreflex control of muscle sympathetic nerve activity (MSNA) at rest and changes in responses of MSNA to orthostasis, six healthy male volunteers (range 26-42 yr) participated in Valsalva maneuver and head-up tilt (HUT) tests before and after 120 days of HDBR. MSNA was measured directly using a microneurographic technique. After long-term HDBR, resting supine MSNA and heart rate were augmented. The baroreflex slopes for MSNA during Valsalva maneuver (in supine position) and during 60 degrees HUT test, determined by least-squares linear regression analysis, were significantly steeper after than before HDBR, whereas the baroreflex slopes for R-R interval were significantly flatter after HDBR. The increase in MSNA from supine to 60 degrees HUT was not different between before and after HDBR, but mean blood pressure decreased in 60 degrees HUT after HDBR. In conclusion, the baroreflex control of MSNA was augmented, whereas the same reflex control of R-R interval was attenuated after 120 days of HDBR.  相似文献   

6.
This study compared the baroreflex control of lumbar and renal sympathetic nerve activity (SNA) in conscious rats. Arterial pressure (AP) and lumbar and renal SNA were simultaneously recorded in six freely behaving rats. Pharmacological estimates of lumbar and renal sympathetic baroreflex sensitivity (BRS) were obtained by means of the sequential intravenous administration of sodium nitroprusside and phenylephrine. Sympathetic BRS was significantly (P < 0.05) lower for lumbar [3.0 +/- 0.4 normalized units (NU)/mmHg] than for renal (7.6 +/- 0.6 NU/mmHg) SNA. During a 219-min baseline period, spontaneous lumbar and renal BRS were continuously assessed by computing the gain of the transfer function relating AP and SNA at heart rate frequency over consecutive 61.4-s periods. The transfer gain was considered only when coherence between AP and SNA significantly differed from zero, which was verified in 99 +/- 1 and 96 +/- 3% of cases for lumbar and renal SNA, respectively. When averaged over the entire baseline period, spontaneous BRS was significantly (P < 0.05) lower for lumbar (1.3 +/- 0.2 NU/mmHg) than for renal (2.3 +/- 0.3 NU/mmHg) SNA. For both SNAs, spontaneous BRS showed marked fluctuations (variation coefficients were 26 +/- 2 and 28 +/- 2% for lumbar and renal SNA, respectively). These fluctuations were positively correlated in five of six rats (R = 0.44 +/- 0.06; n = 204 +/- 8; P < 0.0001). We conclude that in conscious rats, the baroreflex control of lumbar and renal SNA shows quantitative differences but is modulated in a mostly coordinated way.  相似文献   

7.
The effects of acute emotional stress on the sympathetic component of the arterial baroreceptor reflex have not yet been described in conscious animals and humans. Arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were simultaneously recorded in 11 conscious rats before and during exposure to a mild environmental stressor (jet of air). Baroreflex function curves relating AP and RSNA were constructed by fitting a sigmoid function to RSNA and AP measured during sequential nitroprusside and phenylephrine administrations. Stress increased mean AP from 112 +/- 2 to 124 +/- 2 mmHg, heart rate from 381 +/- 10 to 438 +/- 18 beats/min, and RSNA from 0.80 +/- 0.14 to 1.49 +/- 0.23 microV. The RSNA-AP relationship was shifted toward higher AP values, and its maximum gain was significantly (P < 0.01) increased from 9.0 +/- 1.3 to 16.2 +/- 2.1 normalized units (NU)/mmHg. The latter effect was secondary to an increase (P < 0.01) in the range of the RSNA variation from 285 +/- 33 to 619 +/- 59 NU. In addition, the operating range of the reflex was increased (P < 0.01) from 34 +/- 2 to 41 +/- 3 mmHg. The present study indicates that in rats, the baroreflex control of RSNA is sensitized and operates over a larger range during emotional stress, which suggests that renal vascular tone, and possibly AP, are very efficiently controlled by the sympathetic nervous system under this condition.  相似文献   

8.
The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P < 0.005) during the cold pressor test (-244.9 +/- 26.3 units x beat(-1) x mmHg(-1)) when compared with control conditions (-138.8 +/- 18.6 units x beat(-1) x mmHg(-1)), whereas no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that baroreceptors remain capable of modulating MSNA and heart rate during a cold pressor test; however, the sensitivity of baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.  相似文献   

9.
10.
Chronic orthostatic intolerance is often related to the postural orthostatic tachycardia syndrome (POTS). POTS is characterized by upright tachycardia. Understanding of its pathophysiology remains incomplete, but edema and acrocyanosis of the lower extremities occur frequently. To determine how arterial and venous vascular properties account for these findings, we compared 13 patients aged 13-18 yr with 10 normal controls. Heart rate and blood pressure were continuously recorded, and strain-gauge plethysmography was used to measure forearm and calf blood flow, venous compliance, and microvascular filtration while the subject was supine and to measure calf blood flow and calf size change during head-up tilt. Resting venous pressure was higher in POTS compared with control (16 vs. 10 mmHg), which gave the appearance of decreased compliance in these patients. The threshold for edema formation decreased in POTS patients compared with controls (8.3 vs. 16.3 mmHg). With tilt, early calf blood flow increased in POTS patients (from 3.4 +/- 0.9 to 12.6 +/- 2.3 ml. 100 ml(-1). min(-1)) but did not increase in controls. Calf volume increased twice as much in POTS patients compared with controls over a shorter time of orthostasis. The data suggest that resting venous pressure is higher and the threshold for edema is lower in POTS patients compared with controls. Such findings make the POTS patients particularly vulnerable for edema fluid collection. This may signify a redistribution of blood to the lower extremities even while supine, accounting for tachycardia through vagal withdrawal.  相似文献   

11.
This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during baseline, exposure to 20 min of isocapnic hypoxia, and for 5 min following termination of hypoxia. The spontaneous baroreflex threshold technique was used to determine the change in baroreflex function during and following 20 min of isocapnic hypoxia (oxyhemoglobin saturation = 80%). From the spontaneous baroreflex analysis, the linear regression between diastolic blood pressure (DBP) and sympathetic burst occurrence, the T50 (DBP with a 50% likelihood of a burst occurring), and DBP error signal (DBP minus the T50) provide indexes of baroreflex function. MSNA and DBP increased in hypoxia and remained elevated during posthypoxia relative to baseline (P < 0.05). The DBP error signal became progressively less negative (i.e., smaller difference between DBP and T50) in the hypoxia and posthypoxia periods (baseline: -3.9 ± 0.8 mmHg; hypoxia: -1.4 ± 0.6 mmHg; posthypoxia: 0.2 ± 0.6 mmHg; P < 0.05). Hypoxia caused no change in the slope of the baroreflex stimulus-response curve; however, there was a shift toward higher pressures that favored elevations in MSNA, which persisted posthypoxia. Our results indicate that there is a resetting of the baroreflex in hypoxia that outlasts the stimulus and provide further explanation for the complex control of MSNA following acute hypoxia.  相似文献   

12.
Norepinephrine is frequently elevated in postural tachycardia syndrome (POTS), a syndrome of heterogeneous etiology characterized by a >30 beats/min increase in heart rate with standing. Norepinephrine is synthesized from dopamine by dopamine-beta-hydroxylase (DBH). The results of a preliminary study suggested that the T allele frequency of the DBH -1021C-->T polymorphism is elevated in POTS. This allele correlates with low DBH activity and might predict reduced serum DBH activity in patients with POTS. To test the hypothesis that low DBH activity and the underlying -1021C-->T polymorphism are associated with increased susceptibility to POTS, we measured serum DBH activity in POTS and determined its relationship to the DBH genotype and plasma norepinephrine. Serum DBH was similar for 83 normal volunteers and 42 patients with POTS: median (range) = 22.5 (0.5-94.2) and 19.6 (0.1-68.8) nmol.min(-1).ml(-1), respectively (P = 0.282). The genotype frequencies for 254 control and 157 POTS patients were not different between groups ( approximately 63% CC genotype and approximately 5% TT genotype, P = 0.319). The T allele associated with lower serum DBH in both groups [control serum DBH = 15.7 (SD 12.3) and 35.1 nmol.min(-1).ml(-1) (SD 18.6) for T carriers and noncarriers, respectively; POTS serum DBH = 8.2 (SD 5.6) and 28.5 nmol.min(-1).ml(-1) (SD 14.7) for T carriers and noncarriers, respectively]. High DBH in POTS was linked to elevated plasma levels of norepinephrine. Although DBH activity and genotype are unlikely to be primary determinants of susceptibility to POTS, differences in DBH activity in POTS may reflect differences in the level of sympathetic activation.  相似文献   

13.
We aimed to investigate the interaction [with respect to the regulation of muscle sympathetic nerve activity (MSNA) and blood pressure] between the arterial baroreflex and muscle metaboreflex in humans. In 10 healthy subjects who performed a 1-min sustained handgrip exercise at 50% maximal voluntary contraction followed by forearm occlusion, arterial baroreflex control of MSNA (burst incidence and strength and total activity) was evaluated by analyzing the relationship between beat-by-beat spontaneous variations in diastolic arterial blood pressure (DAP) and MSNA both during supine rest (control) and during postexercise muscle ischemia (PEMI). During PEMI (vs. control), 1) the linear relationship between burst incidence and DAP was shifted rightward with no alteration in sensitivity, 2) the linear relationship between burst strength and DAP was shifted rightward and upward with no change in sensitivity, and 3) the linear relationship between total activity and DAP was shifted to a higher blood pressure and its sensitivity was increased. The modification of the control of total activity that occurs in PEMI could be a consequence of alterations in the baroreflex control of both MSNA burst incidence and burst strength. These results suggest that the arterial baroreflex and muscle metaboreflex interact to control both the occurrence and strength of MSNA bursts.  相似文献   

14.
Standing translocates thoracic blood volume into the dependent body. The skeletal muscle pump participates in preventing orthostatic intolerance by enhancing venous return. We investigated the hypothesis that skeletal muscle pump function is impaired in postural tachycardia (POTS) associated with low calf blood flow (low-flow POTS) and depends in general on muscle blood flow. We compared 12 subjects that have low-flow POTS with 10 controls and 7 patients that have POTS and normal calf blood flow using strain-gauge plethysmography to measure peripheral blood flow, venous capacitance, and calf muscle pump function. Blood volume was estimated by dye dilution. We found that calf circumference was reduced in low-flow POTS (32 +/- 1 vs. 39 +/- 3 and 43 +/- 3 cm) and, compared with controls and POTS patients with normal blood flow, is related to the reduced fraction of calf venous capacity emptied during voluntary muscle contraction (ejection fraction, 0.52 +/- 0.07 vs. 0.76 +/- 0.07 and 0.80 +/- 0.06). We found that blood flow was linearly correlated (r(p) = 0.69) with calf circumference (used as a surrogate for muscle mass). Blood volume measurements were 2.2 +/- 0.3 in low-flow POTS vs. 2.6 +/- 0.5 in controls (P = 0.17) and 2.4 +/- 0.7 in normal-flow POTS patients. Decreased calf blood flow may reduce calf size in POTS and thereby impair the upright ejective ability of the skeletal muscle pump and further contribute to overall reduced blood flow and orthostatic intolerance in these patients.  相似文献   

15.
Despite its usefulness as a nongenetic model of hypertension, little information is available regarding baroreflex function in the Grollman, renal wrap model of hypertension in the rat. Baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) were studied in male, Sprague-Dawley rats hypertensive (HT) for 1 or 4-6 wk after unilateral nephrectomy and figure-8 ligature around the remaining kidney or normotensive (NT) after sham surgery. Rats were anesthetized with Inactin and RSNA, and HR was recorded during intravenous infusions of sodium nitroprusside or phenylephrine to lower or raise mean arterial pressure (MAP). Response curves were analyzed using a logistic sigmoid function. In 1- and 4-wk HT rats the midpoints of RSNA and HR reflex curves were shifted to the right (P < 0.05). Comparing NT to 1- or 4-wk HT rats, the gain of RSNA-MAP curves was no different; however, gain was reduced in the HR-MAP curves at both 1 and 4 wk in HT rats (P < 0.05). In anesthetized rats the HR range was small; therefore, MAP and HR were measured in conscious rats during intravenous injections of three doses of phenylephrine and three doses of sodium nitroprusside. Linear regressions revealed a reduced slope in both 1- and 4-wk HT rats compared with NT rats (P < 0.05). The results indicate that baroreflex curves are shifted to the right, to higher pressures, in hypertension. After 1-4 wk of hypertension the gain of baroreflex regulation of RSNA is not altered; however, the gain of HR regulation is reduced.  相似文献   

16.
Ray, Chester A., and Kathryn H. Gracey. Augmentation ofexercise-induced muscle sympathetic nerve activity during muscle heating. J. Appl. Physiol. 82(6):1719-1725, 1997.The muscle metabo- and mechanoreflexes have beenshown to increase muscle sympathetic nerve activity (MSNA) duringexercise. Group III and IV muscle afferents, which are believed tomediate this response, have been shown to be thermosensitive inanimals. The purpose of the present study was to evaluate the effect ofmuscle temperature on MSNA responses during exercise. Eleven subjectsperformed ischemic isometric handgrip at 30% of maximal voluntarycontraction to fatigue, followed by 2 min of postexercise muscleischemia (PEMI), with and without local heating of the forearm. Localheating of the forearm increased forearm muscle temperature from 34.4 ± 0.2 to 38.9 ± 0.3°C(P = 0.001). Diastolic andmean arterial pressures were augmented during exercise in the heat.MSNA responses were greater during ischemic handgrip with local heatingcompared with control (no heating) after the first 30 s. MSNA responsesat fatigue were greater during local heating. MSNA increased by 16 ± 2 and 20 ± 2 bursts per 30 s for control and heating,respectively (P = 0.03). Whenexpressed as a percent change in total activity (total burstamplitude), MSNA increased 531 ± 159 and 941 ± 237% forcontrol and heating, respectively (P = 0.001). However, MSNA was not different during PEMI between trials.This finding suggests that the augmentation of MSNA during exercisewith heat was due to the stimulation of mechanically sensitive muscleafferents. These results suggest that heat sensitizes skeletal muscleafferents during muscle contraction in humans and may play a role inthe regulation of MSNA during exercise.

  相似文献   

17.
Fractal properties of human muscle sympathetic nerve activity   总被引:1,自引:0,他引:1  
Muscle sympathetic nerve activity (MSNA) in resting humans is characterized by cardiac-related bursts of variable amplitude that occur sporadically or in clusters. The present study was designed to characterize the fluctuations in the number of MSNA bursts, interburst interval, and burst amplitude recorded from the peroneal nerve of 15 awake, healthy human subjects. For this purpose, we used the Allan and Fano factor analysis and dispersional analysis to test whether the fluctuations were time-scale invariant (i.e., fractal) or random in occurrence. Specifically, we measured the slopes of the power laws in the Allan factor, Fano factor, and dispersional analysis curves. In addition, the Hurst exponent was calculated from the slope of the power law in the Allan factor curve. Whether the original time series contained fractal fluctuations was decided on the basis of a comparison of the values of these parameters with those for surrogate data blocks. The results can be summarized as follows. Fluctuations in the number of MSNA bursts and interburst interval were fractal in each of the subjects, and fluctuations in burst amplitude were fractal in four of the subjects. We also found that fluctuations in the number of heartbeats and heart period (R-R interval) were fractal in each of the subjects. These results demonstrate for the first time that apparently random fluctuations in human MSNA are, in fact, dictated by a time-scale-invariant process that imparts "long-term memory" to the sequence of cardiac-related bursts. Whether sympathetic outflow to the heart also is fractal and contributes to the fractal component of heart rate variability remains an open question.  相似文献   

18.
Interactions between mechanisms governing ventilation and blood pressure (BP) are not well understood. We studied in 11 resting normal subjects the effects of sustained isocapnic hyperventilation on arterial baroreceptor sensitivity, determined as the alpha index between oscillations in systolic BP (SBP) generated by respiration and oscillations present in R-R intervals (RR) and in peripheral sympathetic nerve traffic [muscle sympathetic nerve activity (MSNA)]. Tidal volume increased from 478 +/- 24 to 1,499 +/- 84 ml and raised SBP from 118 +/- 2 to 125 +/- 3 mmHg, whereas RR decreased from 947 +/- 18 to 855 +/- 11 ms (all P < 0.0001); MSNA did not change. Hyperventilation reduced arterial baroreflex sensitivity to oscillations in SBP at both cardiac (from 13 +/- 1 to 9 +/- 1 ms/mmHg, P < 0.001) and MSNA levels (by -37 +/- 5%, P < 0.0001). Thus increased BP during hyperventilation does not elicit any reduction in either heart rate or MSNA. Baroreflex modulation of RR and MSNA in response to hyperventilation-induced BP oscillations is attenuated. Blunted baroreflex gain during hyperventilation may be a mechanism that facilitates simultaneous increases in BP, heart rate, and sympathetic activity during dynamic exercise and chemoreceptor activation.  相似文献   

19.
Postural tachycardia syndrome (POTS) is characterized by excessive increases in heart rate (HR) without hypotension during orthostasis. The relationship between the tachycardia and anxiety is uncertain. Therefore, we tested whether the HR response to orthostatic stress in POTS is primarily related to psychological factors. POTS patients (n = 14) and healthy controls (n = 10) underwent graded venous pooling with lower body negative pressure (LBNP) to -40 mmHg while wearing deflated antishock trousers. "Sham" venous pooling was performed by 1) trouser inflation to 5 mmHg during LBNP and 2) vacuum pump activation without LBNP. HR responses to mental stress were also measured in both groups, and a questionnaire was used to measure psychological parameters. During LBNP, HR in POTS patients increased 39 +/- 5 beats/min vs. 19 +/- 3 beats/min in control subjects at -40 mmHg (P < 0.01). LBNP with trouser inflation markedly blunted the HR responses in the patients (9 +/- 2 beats/min) and controls (2 +/- 1 beats/min), and there was no HR increase during vacuum application without LBNP in either group. HR responses during mental stress were not different in the patients and controls (18 +/- 2 vs. 19 +/- 1 beats/min; P > 0.6). Anxiety, somatic vigilance, and catastrophic cognitions were significantly higher in the patients (P < 0.05), but they were not related to the HR responses during LBNP or mental stress (P > 0.1). These results suggest that the HR response to orthostatic stress in POTS patients is not caused by anxiety but that it is a physiological response that maintains arterial pressure during venous pooling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号