首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abonyo BO  Lebby KD  Tonry JH  Ahmad M  Heiman AS 《Cytokine》2006,36(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

3.
《Cytokine》2007,37(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1α (CCL3) whose expression was induced by the Th1 cytokines IL-1β and IFN-γ. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

4.
Eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 bind specifically and exclusively to CC chemokine receptor (CCR) 3, which is a potential therapeutic target in treating the peribronchial eosinophilia associated with allergic airway diseases. Bronchial epithelial cells represent an important source of chemokines, and thus we investigated in vitro and in vivo expression of eotaxin-2 and eotaxin-3 in bronchial epithelial cells in comparison with that of eotaxin-1. Immunohistochemistry showed increased expression of both eotaxin-2 and eotaxin-3 in addition to eotaxin-1 in asthmatics. Considerable amounts of eotaxins were secreted by bronchial epithelial lineage. As with eotaxin-1 production, generation of eotaxin-2 and eotaxin-3 by bronchial epithelial cells was up-regulated by IL-4 and IL-13, and attenuated by IFN-gamma and glucocorticoids. In addition to eotaxin-1 expression, but also eotaxin-2 and eotaxin-3 expression in the bronchial epithelium should be taken into consideration when developing the therapeutic strategies to treat eosinophilic airway diseases.  相似文献   

5.
CCL5 (or RANTES (regulated upon activation, normal T cell expressed and secreted)) recruits T lymphocytes and monocytes. The source and regulation of CCL5 in pulmonary tuberculosis are unclear. Infection of the human alveolar epithelial cell line (A549) by Mycobacterium tuberculosis caused no CCL5 secretion and little monocyte secretion. Conditioned medium from tuberculosis-infected human monocytes (CoMTB) stimulated significant CCL5 secretion from A549 cells and from primary alveolar, but not upper airway, epithelial cells. Differential responsiveness of small airway and normal human bronchial epithelial cells to CoMTB but not to conditioned medium from unstimulated human monocytes was specific to CCL5 and not to CXCL8. CoMTB induced CCL5 mRNA accumulation in A549 cells and induced nuclear translocation of nuclear factor kappaB (NFkappaB) subunits p50, p65, and c-rel at 1 h; nuclear binding of activator protein (AP)-1 (c-Fos, FosB, and c-Jun) at 4-8 h; and binding of NF-interleukin (IL)-6 at 24 h. CCL5 promoter-reporter analysis using deletion and site-specific mutagenesis constructs demonstrated a key role for AP-1, NF-IL-6, and NFkappaB in driving CoMTB-induced promoter activity. The IL-1 receptor antagonist inhibited A549 and small airway epithelial cell CCL5 secretion, gene expression, and promoter activity. CoMTB contained IL-1beta, and recombinant IL-1beta reproduced CoMTB effects. Monocyte alveolar, but not upper airway, epithelial cell networks in pulmonary tuberculosis cause AP-1-, NF-IL-6-, and NFkappaB-dependent CCL5 secretion. IL-1beta is the critical regulator of tuberculosis-stimulated CCL5 secretion in the lung.  相似文献   

6.
Airway epithelium acts as multifunctional site of response in the respiratory tract. Epithelial activity plays an important part in the pathophysiology of obstructive lung disease. In this study, we compare normal human epithelial cells from various levels of the respiratory tract in terms of their reactivity to pro-allergic and pro-inflammatory stimulation. Normal human nasal, bronchial and small airway epithelial cells were stimulated with IL-4 and IL-13. The expressions of the eotaxins IL-6 and CXCL8 were evaluated at the mRNA and protein levels. The effects of pre-treatment with IFN-γ on the cell reactivity were measured, and the responses to TNF-α, LPS and IFN-γ were evaluated. All of the studied primary cells expressed CCL26, IL-6 and IL-8 after IL-4 or IL-13 stimulation. IFN-γ pre-treatment resulted in decreased CCL26 and increased IL-6 expression in the nasal and small airway cells, but this effect was not observed in the bronchial cells. IL-6 and CXCL8 were produced in varying degrees by all of the epithelial primary cells in cultures stimulated with TNF-α, LPS or IFN-γ. We showed that epithelial cells from the various levels of the respiratory tract act in a united way, responding in a similar manner to stimulation with IL-4 and IL-13, showing similar reactivity to TNF-α and LPS, and giving an almost unified response to IFN-γ pre-stimulation.  相似文献   

7.
The ontogeny of the C-C chemokines eotaxin-1, eotaxin-2, and eotaxin-3 has not been fully elucidated in human lung. We explored a possible role for eotaxin in developing lung by determining the ontogeny of eotaxin-1 (CCL11), eotaxin-2 (CCL24), eotaxin-3 (CCL26), and the eotaxin receptor, CCR3. We tested discarded surgical samples of developing human lung tissue using quantitative RT-PCR (QRT-PCR) and immunostaining for expression of CCL11, CCL24, CCL26, and CCR3. We assessed possible functionality of the eotaxin-CCR3 system by treating lung explant cultures with exogenous CCL11 and analyzing the cultures for evidence of changes in proliferation and activation of ERK1/2, a signaling pathway associated with CCR3. QRT-PCR analyses of 22 developing lung tissue samples with gestational ages 10-23 wk demonstrated that eotaxin-1 mRNA is most abundant in developing lung, whereas mRNAs for eotaxin-2 and eotaxin-3 are minimally detectable. CCL11 mRNA levels correlated with gestational age (P < 0.05), and immunoreactivity was localized predominantly to airway epithelial cells. QRT-PCR analysis detected CCR3 expression in 16 of 19 developing lung samples. Supporting functional capacity in the immature lung, CCL11 treatment of lung explant cultures resulted in significantly increased (P < 0.05) cell proliferation and activation of the ERK signaling pathway, which is downstream from CCR3, suggesting that proliferation was due to activation of CCR3 receptors by CCL11. We conclude that developing lung expresses the eotaxins and functional CCR3 receptor. CCL11 may promote airway epithelial proliferation in the developing lung.  相似文献   

8.
Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.  相似文献   

9.
10.
The increasing number of eosinophils into bronchoaelvolar space is observed during noninfectious inflammatory lung diseases. Eotaxins (eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26) are the strongest chemotactic agents for eosinophils. Inhibitors of phosphodiesterase 4 (PDE4), the enzyme decomposing cAMP, are anti-inflammatory agents which act through cAMP elevation and inhibit numerous steps of allergic inflammation. The effect of PDE4 inhibitors on eotaxin expression is not known in details. The aim of our study was to evaluate the influence of PDE4 inhibitors: rolipram and RO-20-1724 on expression of eotaxins in bronchial epithelial cell line BEAS-2B. Cells were preincubated with PDE4 inhibitors or dexamethasone for 1 hour and then stimulated with IL-4 or IL-13 alone or in combination with TNF-α. After 48 hours eotaxin protein level was measured by ELISA and mRNA level by real time PCR. Results: PDE4 inhibitors decreased CCL11 and CCL26 expression only in cultures co-stimulated with TNF-α. In cultures stimulated with IL-4 and TNF-α rolipram and RO-20-1724 diminished CCL11 mRNA expression by 34 and 37%, respectively, and CCL26 by 43 and 47%. In cultures stimulated with IL-13 and TNF-α rolipram and RO-20-1724 decreased expression of both eotaxins by about 50%. These results were confirmed at the protein level. The effect of PDE4 inhibitors on eotaxin expression in BEAS-2B cells, in our experimental conditions, depends on TNF-α contribution.  相似文献   

11.

Introduction

Airway epithelial cells play a central role in the physiopathology of asthma. They release eotaxins when treated with TH2 cytokines such as interleukin (IL)-4 or IL-13, and these chemokines attract eosinophils and potentiate the biosynthesis of cysteinyl leukotrienes (cysLTs), which in turn induce bronchoconstriction and mucus secretion. These effects of cysLTs mainly mediated by CysLT1 and CysLT2 receptors on epithelial cell functions remain largely undefined. Because the release of inflammatory cytokines, eotaxins, and cysLTs occur relatively at the same time and location in the lung tissue, we hypothesized that they regulate inflammation cooperatively rather than redundantly. We therefore investigated whether cysLTs and the TH2 cytokines would act in concert to augment the release of eotaxins by airway epithelial cells.

Methods

A549 cells or human primary bronchial epithelial cells were incubated with or without IL-4, IL-13, and/or LTD4. The release of eotaxin-3 and the expression of cysLT receptors were assessed by ELISA, RT-PCR, and flow cytometry, respectively.

Results

IL-4 and IL-13 induced the release of eotaxin-3 by airway epithelial cells. LTD4 weakly induced the release of eotaxin-3 but clearly potentiated the IL-13-induced eotaxin-3 release. LTD4 had no effect on IL-4-stimulated cells. Epithelial cells expressed CysLT1 but not CysLT2. CysLT1 expression was increased by IL-13 but not by IL-4 and/or LTD4. Importantly, the upregulation of CysLT1 by IL-13 preceded eotaxin-3 release.

Conclusions

These results demonstrate a stepwise cooperation between IL-13 and LTD4. IL-13 upregulates CysLT1 expression and consequently the response to cysLTs This results in an increased release of eotaxin-3 by epithelial cells which at its turn increases the recruitment of leukocytes and their biosynthesis of cysLTs. This positive amplification loop involving epithelial cells and leukocytes could be implicated in the recruitment of eosinophils observed in asthmatics.  相似文献   

12.
CCL28 is a mucosal chemokine that attracts eosinophils and T cells via the receptors CCR3 and CCR10. Consequently, it is a candidate mediator of the pathology associated with asthma. This study examined constitutive and induced expression of CCL28 by A549 human airway epithelial-like cells. Real-time RT-PCR and ELISA of cultured cells and supernatants revealed constitutive levels of CCL28 expression to be low, whereas IL-1beta and TNF-alpha, induced significantly increased expression. Observations from induced sputum and human airway biopsies supported this. Signal transduction studies revealed that IL-1beta and TNF-alpha stimulation induced NFkappaB phosphorylation in A549 cells, but antagonist inhibition of NFkappaB p50-p65 phosphorylation correlated with marked reduction of IL-1beta or TNF-alpha induced CCL28 expression. Together these studies imply a role for CCL28 in the orchestration of airway inflammation, and suggest that CCL28 is one link between microbial insult and the exacerbation of pathologies such as asthma, through an NFkappaB-dependent mechanism.  相似文献   

13.
CCL25 (also known as thymus-expressed chemokine) and CCL28 (also known as mucosae-associated epithelial chemokine) play important roles in mucosal immunity by recruiting IgA Ab-secreting cells (ASCs) into mucosal lamina propria. However, their exact roles in vivo still remain to be defined. In this study, we first demonstrated in mice that IgA ASCs in small intestine expressed CCR9, CCR10, and CXCR4 on the cell surface and migrated to their respective ligands CCL25, CCL28, and CXCL12 (also known as stromal cell-derived factor 1), whereas IgA ASCs in colon mainly expressed CCR10 and CXCR4 and migrated to CCL28 and CXCL12. Reciprocally, the epithelial cells of small intestine were immunologically positive for CCL25 and CCL28, whereas those of colon were positive for CCL28 and CXCL12. Furthermore, the venular endothelial cells in small intestine were positive for CCL25 and CCL28, whereas those in colon were positive for CCL28, suggesting their direct roles in extravasation of IgA ASCs. Consistently, in mice orally immunized with cholera toxin (CT), anti-CCL25 suppressed homing of CT-specific IgA ASCs into small intestine, whereas anti-CCL28 suppressed homing of CT-specific IgA ASCs into both small intestine and colon. Reciprocally, CT-specific ASCs and IgA titers in the blood were increased in mice treated with anti-CCL25 or anti-CCL28. Anti-CXCL12 had no such effects. Finally, both CCL25 and CCL28 were capable of enhancing alpha4 integrin-dependent adhesion of IgA ASCs to mucosal addressin cell adhesion molecule-1 and VCAM-1. Collectively, CCL25 and CCL28 play essential roles in intestinal homing of IgA ASCs primarily by mediating their extravasation into intestinal lamina propria.  相似文献   

14.
Allergenic serine proteases are important in the pathogenesis of asthma. One of these, Pen c 13, is the immunodominant allergen produced by Penicillium citrinum. Many serine proteases induce cytokine expression, but whether Pen c 13 does so in human respiratory epithelial cells is not known. In this study, we investigated whether Pen c 13 caused IL-8 release and activated protease-activated receptors (PARs) in airway epithelial cells. In airway-derived A549 cells and normal human airway epithelial cells, Pen c 13 induced IL-8 release in a dose-dependent manner. Pen c 13 also increased IL-8 release in a time-dependent manner in A549 cells. Pen c 13 cleaved PAR-1 and PAR-2 at their activation sites. Treatment with Pen c 13 induced intracellular Ca(2+) mobilization and desensitized the cells to the action of other proteases and PAR-1 and PAR-2 agonists. Moreover, Pen c 13-mediated IL-8 release was significantly decreased in Ca(2+)-free medium and was abolished by the protease inhibitors, PMSF and 4-(2-aminoethyl) benzenesulfonyl fluoride. Blocking Abs against the cleavage sites of PAR-1 and PAR-2, but not of PAR-4, inhibited Pen c 13-induced IL-8 production, as did inhibition of phospholipase C. Pen c 13 induced IL-8 expression via activation of ERK 1/2, and not of p38 and JNK. In addition, treatment of A549 cells or normal human airway epithelial cells with Pen c 13 increased phosphorylation of ERK 1/2 by a Ca(2+)-dependent pathway. These finding show that Pen c 13 induces IL-8 release in airway epithelial cells and that this is dependent on PAR-1 and PAR-2 activation and intracellular calcium.  相似文献   

15.

Background

Asthma causes significant morbidity worldwide in adults and children alike, and incurs large healthcare costs. The statin drugs, which treat hyperlipidemia and cardiovascular diseases, have pleiotropic effects beyond lowering cholesterol, including immunomodulatory, anti-inflammatory, and anti-fibrotic properties which may benefit lung health. Using an allergic mouse model of asthma, we previously demonstrated a benefit of statins in reducing peribronchiolar eosinophilic inflammation, airway hyperreactivity, goblet cell hyperplasia, and lung IL-4 and IL-13 production.

Objectives

In this study, we evaluated whether simvastatin inhibits IL-13-induced pro-inflammatory gene expression of asthma-related cytokines in well-differentiated primary mouse tracheal epithelial (MTE) cell cultures. We hypothesized that simvastatin reduces the expression of IL-13-inducible genes in MTE cells.

Methods

We harvested tracheal epithelial cells from naïve BALB/c mice, grew them under air-liquid interface (ALI) cell culture conditions, then assessed IL-13-induced gene expression in MTE cells using a quantitative real-time PCR mouse gene array kit.

Results

We found that simvastatin had differential effects on IL-13-mediated gene expression (inhibited eotaxin-1; MCP-1,-2,-3; and osteopontin (SPP1), while it induced caspase-1 and CCL20 (MIP-3α)) in MTE cells. For other asthma-relevant genes such as TNF, IL-4, IL-10, CCL12 (MCP-5), CCL5 (RANTES), and CCR3, there were no significant IL-13-inducible or statin effects on gene expression.

Conclusions

Simvastatin modulates the gene expression of selected IL-13-inducible pro-inflammatory cytokines and chemokines in primary mouse tracheal epithelial cells. The airway epithelium may be a viable target tissue for the statin drugs. Further research is needed to assess the mechanisms of how statins modulate epithelial gene expression.  相似文献   

16.
Adult T cell leukemia is a mature CD4+ T cell malignancy which predominantly expresses CCR4 and is etiologically associated with human T cell leukemia virus type 1 (HTLV-1). Because HTLV-1 transmission depends on close cell-cell contacts, HTLV-1-infected T cells may preferentially interact with CCR4+CD4+ T cells for efficient viral transmission. In terms of gene expression and protein secretion, we found a strong correlation between HTLV-1 Tax oncoprotein and CCL22, a CCR4 ligand, in HTLV-1-infected T cells. Transient Tax expression in an HTLV-1-negative T cell line activated the CCL22 promoter and induced CCL22. Additionally, tax gene knockdown by small interference RNA reduced CCL22 expression in the infected T cells. These findings indicate that CCL22 is a cellular target gene of Tax. In chemotaxis assays, the culture supernatants of HTLV-1-infected T cells selectively attracted CCR4+CD4+ T cells in PBMCs. This was blocked by pretreating the supernatants with anti-CCL22 Ab or PBMCs with a synthetic CCR4 antagonist. In coculture experiments, primary CCR4+CD4+ T cells significantly adhered to Tax-expressing cells. This adhesion was blocked by the CCR4 antagonist or pertussis toxin. Interestingly, CCR4 was redistributed to the contact region, and in some cases, this was accompanied by a polarized microtubule-organizing center, which is an indicator of virological synapse formation, in the infected T cells. Finally, anti-CCL22 Ab treatment also blocked HTLV-1 transmission to primary CD4+ T cells in coculture experiments with HTLV-1 producer cells. Thus, HTLV-1-infected T cells produce CCL22 through Tax and selectively interact with CCR4+CD4+ T cells, resulting in preferential transmission of HTLV-1 to CCR4+CD4+ T cells.  相似文献   

17.
18.
IL-13 is a major effector at sites of Th2 inflammation and tissue remodeling. In these locations, it frequently coexists with the CCR5 chemokine receptor and its ligands MIP-1alpha/CCL3 and MIP-1beta/CCL4. We hypothesized that CCR5 induction and activation play important roles in the pathogenesis of IL-13-induced tissue responses. To test this hypothesis, we evaluated the effects of IL-13 on the expression of CCR5 in the murine lung. We also compared the effects of lung-targeted transgenic IL-13 in mice treated with anti-CCR5 or an Ab control and mice with wild-type or null CCR5 loci. These studies demonstrate that IL-13 is a potent stimulator of epithelial cell CCR5 expression. They also demonstrate that CCR5 neutralization or a deficiency of CCR5 significantly decreases IL-13-induced inflammation, alveolar remodeling, structural and inflammatory cell apoptosis, and respiratory failure and death. Lastly, these studies provide mechanistic insights by demonstrating that CCR5 is required for optimal IL-13 stimulation of select chemokines (MIP-1alpha/CCL3, MIP-1beta/CCL4, MCP-1/CCL-2), matrix metalloproteinase-9 and cell death regulators (Fas, TNF, TNFR1, TNFR2, Bid), optimal IL-13 inhibition of alpha1-antitrypsin, and IL-13-induction of and activation of caspases-3, -8, and-9. Collectively, these studies demonstrate that CCR5 plays a critical role in the pathogenesis of IL-13-induced inflammation and tissue remodeling.  相似文献   

19.
The intestinal mucosa contains a subset of lymphocytes that produce Th2 cytokines, yet the signals responsible for the recruitment of these cells are poorly understood. Macrophage-derived chemokine (MDC/CCL22) is a recently described CC chemokine known to chemoattract the Th2 cytokine producing cells that express the receptor CCR4. The studies herein demonstrate the constitutive production of MDC/CCL22 in vivo by human colon epithelium and by epithelium of human intestinal xenografts. MDC/CCL22 mRNA expression and protein secretion was upregulated in colon epithelial cell lines in response to proinflammatory cytokines or infection with enteroinvasive bacteria. Inhibition of nuclear factor (NF)-kappaB activation abolished MDC/CCL22 expression in response to proinflammatory stimuli, demonstrating that MDC/CCL22 is a NF-kappaB target gene. In addition, tumor necrosis factor-alpha-induced MDC/CCL22 secretion was differentially modulated by Th1 and Th2 cytokines. Supernatants from the basal, but not apical, side of polarized epithelial cells induced a MDC/CCL22-dependent chemotaxis of CCR4-positive T cells. These studies demonstrate the constitutive and regulated production by intestinal epithelial cells of a chemokine known to function in the trafficking of T cells that produce anti-inflammatory cytokines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号