首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion. A large family of bacterial proteins is inserted in the inclusion membrane, and the role of these inclusion proteins is mostly unknown. Here we identify SNARE-like motifs in the inclusion protein IncA, which are conserved among most Chlamydia species. We show that IncA can bind directly to several host SNARE proteins. A subset of SNAREs is specifically recruited to the immediate vicinity of the inclusion membrane, and their accumulation is reduced around inclusions that lack IncA, demonstrating that IncA plays a predominant role in SNARE recruitment. However, interaction with the SNARE machinery is probably not restricted to IncA as at least another inclusion protein shows similarities with SNARE motifs and can interact with SNAREs. We modelled IncA's association with host SNAREs. The analysis of intermolecular contacts showed that the IncA SNARE-like motif can make specific interactions with host SNARE motifs similar to those found in a bona fide SNARE complex. Moreover, point mutations in the central layer of IncA SNARE-like motifs resulted in the loss of binding to host SNAREs. Altogether, our data demonstrate for the first time mimicry of the SNARE motif by a bacterium.  相似文献   

2.
Chlamydiae replicate intracellularly in a vacuole called an inclusion. Chlamydial-infected host cells are protected from mitochondrion-dependent apoptosis, partly due to degradation of BH3-only proteins. The host-cell adapter protein 14-3-3beta can interact with host-cell apoptotic signaling pathways in a phosphorylation-dependent manner. In Chlamydia trachomatis-infected cells, 14-3-3beta co-localizes to the inclusion via direct interaction with a C. trachomatis-encoded inclusion membrane protein. We therefore explored the possibility that the phosphatidylinositol-3 kinase (PI3K) pathway may contribute to resistance of infected cells to apoptosis. We found that inhibition of PI3K renders C. trachomatis-infected cells sensitive to staurosporine-induced apoptosis, which is accompanied by mitochondrial cytochrome c release. 14-3-3beta does not associate with the Chlamydia pneumoniae inclusion, and inhibition of PI3K does not affect protection against apoptosis of C. pneumoniae-infected cells. In C. trachomatis-infected cells, the PI3K pathway activates AKT/protein kinase B, which leads to maintenance of the pro-apoptotic protein BAD in a phosphorylated state. Phosphorylated BAD is sequestered via 14-3-3beta to the inclusion, but it is released when PI3K is inhibited. Depletion of AKT through short-interfering RNA reverses the resistance to apoptosis of C. trachomatis-infected cells. BAD phosphorylation is not maintained and it is not recruited to the inclusion of Chlamydia muridarum, which protects poorly against apoptosis. Thus, sequestration of BAD away from mitochondria provides C. trachomatis with a mechanism to protect the host cell from apoptosis via the interaction of a C. trachomatis-encoded inclusion protein with a host-cell phosphoserine-binding protein.  相似文献   

3.
Bacterial pathogens have developed a wide range of strategies to survive within human cells. A number of pathogens multiply in a vacuolar compartment, whereas others can rupture the vacuole and replicate in the host cytosol. A common theme among many bacterial pathogens is the use of specialised secretion systems to deliver effector proteins into the host cell. These effectors can manipulate the host's membrane trafficking pathways to remodel the vacuole into a replication‐permissive niche and prevent degradation. As master regulators of eukaryotic membrane traffic, Rab GTPases are principal targets of bacterial effectors. This review highlights the manipulation of Rab GTPases that regulate host recycling endocytosis by several bacterial pathogens, including Chlamydia pneumoniae, Chlamydia trachomatis, Shigella flexneri, Salmonella enterica serovar Typhimurium, Uropathogenic Escherichia coli, and Legionella pneumophila. Recycling endocytosis plays key roles in a variety of cellular aspects such as nutrient uptake, immunity, cell division, migration, and adhesion. Though much remains to be understood about the molecular basis and the biological relevance of bacterial pathogens exploiting Rab GTPases, current knowledge supports the notion that endocytic recycling Rab GTPases are differentially targeted to avoid degradation and support bacterial replication. Thus, future studies of the interactions between bacterial pathogens and host endocytic recycling pathways are poised to deepen our understanding of bacterial survival strategies.  相似文献   

4.
Chlamydia trachomatis infection has been suggested to induce host genome duplication and is linked to increased risks of cervical cancer. We describe here the mechanism by which Chlamydia causes a cleavage furrow defect that consistently results in the formation of multinucleated host cells, a phenomenon linked to tumorigenesis. Host signaling proteins essential for cleavage furrow initiation, ingression, and stabilization are displaced from one of the prospective furrowing cortices after Chlamydia infection. This protein displacement leads to the formation of a unique asymmetrical, unilateral cleavage furrow in infected human cells. The asymmetrical distribution of signaling proteins is caused by the physical presence of the Chlamydia inclusion at the cell equator. By using ingested latex beads, we demonstrate that the presence of a large vacuole at the cell equator is sufficient to cause furrow ingression failure and can lead to multinucleation. Interestingly, internalized latex beads of similar size do not localize to the cell equator as efficiently as Chlamydia inclusions; moreover, inhibition of bacterial protein synthesis with antibiotic reduces the frequency at which Chlamydia localizes to the cell equator. Together, these results suggest that Chlamydia effectors are involved in strategic positioning of the inclusion during cell division.  相似文献   

5.
Chlamydia trachomatis manipulates host cellular pathways to ensure its proliferation and survival. Translocation of host materials into the pathogenic vacuole (termed ‘inclusion’) may facilitate nutrient acquisition and various organelles have been observed within the inclusion, including lipid droplets, peroxisomes, multivesicular body components, and membranes of the endoplasmic reticulum (ER). However, few of these processes have been documented in living cells. Here, we survey the localization of a broad panel of subcellular elements and find ER, mitochondria, and inclusion membranes within the inclusion lumen of fixed cells. However, we see little evidence of intraluminal localization of these organelles in live inclusions. Using time-lapse video microscopy we document ER marker translocation into the inclusion lumen during chemical fixation. These intra-inclusion ER elements resist a variety of post-fixation manipulations and are detectable via immunofluorescence microscopy. We speculate that the localization of a subset of organelles may be exaggerated during fixation. Finally, we find similar structures within the pathogenic vacuole of Coxiella burnetti infected cells, suggesting that fixation-induced translocation of cellular materials may occur into the vacuole of a range of intracellular pathogens.  相似文献   

6.
During its developmental cycle, the intracellular bacterial pathogen Chlamydia trachomatis remains confined within a protective vacuole known as an inclusion. Nevertheless, CD8(+) T cells that recognize Chlamydia Ags in the context of MHC class I molecules are primed during infection. MHC class I-restricted presentation of these Ags suggests that these proteins or domains from them have access to the host cell cytoplasm. Chlamydia products with access to the host cell cytoplasm define a subset of molecules uniquely positioned to interface with the intracellular environment during the pathogen's developmental cycle. In addition to their use as candidate Ags for stimulating CD8(+) T cells, these proteins represent novel candidates for therapeutic intervention of infection. In this study, we use C. trachomatis-specific murine T cells and an expression-cloning strategy to show that CT442 from Chlamydia is targeted by CD8(+) T cells. CT442, also known as CrpA, is a 15-kDa protein of undefined function that has previously been shown to be associated with the Chlamydia inclusion membrane. We show that: 1) CD8(+) T cells specific for an H-2D(b)-restricted epitope from CrpA are elicited at a significant level (approximately 4% of splenic CD8(+) T cells) in mice in response to infection; 2) the response to this epitope correlates with clearance of the organism from infected mice; and 3) immunization with recombinant vaccinia virus expressing CrpA elicits partial protective immunity to subsequent i.v. challenge with C. trachomatis.  相似文献   

7.
Chlamydiae are obligate intracellular pathogens that reside within a membrane-bound vacuole throughout their developmental cycle. In this study, the intraphagosomal pH of Chlamydia pneumoniae ( Cpn ) was qualitatively assessed, and the intracellular fate of the pathogen-containing vacuole and its interaction with endocytic organelles in human epithelial cells were analysed using conventional immunofluorescence and confocal microscopy. The pH-sensitive probes acridine orange (AO), LysoTracker (LyT) and DAMP did not accumulate in the bacterial inclusion. In addition, exposure of cells to bafilomycin A1 (BafA1), a potent acidification inhibitor, did not inhibit or delay chlamydial growth. The chlamydial compartment was not accessible to the fluid-phase tracer Texas Red (TR)-dextran and did not exhibit any level of staining for the late endosomal marker cation-independent mannose-6-phosphate receptor (Ci-M6PR) or for the lysosomal-associated membrane proteins (LAMP-1 and -2) and CD63. In addition, transferrin receptor (TfR)-enriched vesicles were observed close to Cpn vacuoles, potentially indicating a specific translocation of these organelles through the cytoplasm to the vicinity of the vacuole. We conclude that Cpn , like other chlamydial spp., circumvents the host endocytic pathway and inhabits a non-acidic vacuole, which is dissociated from late endosomes and lysosomes, but selectively accumulates early endosomes.  相似文献   

8.
Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential for normal inclusion development and reactivation of persistent C. trachomatis infection.  相似文献   

9.
The prokaryote Chlamydia trachomatis and the protozoan Toxoplasma gondii, two obligate intracellular pathogens of humans, have evolved a similar modus operandi to colonize their host cell and salvage nutrients from organelles. In order to gain fundamental knowledge on the pathogenicity of these microorganisms, we have established a cell culture model whereby single fibroblasts are coinfected by C. trachomatis and T. gondii. We previously reported that the two pathogens compete for the same nutrient pools in coinfected cells and that Toxoplasma holds a significant competitive advantage over Chlamydia. Here we have expanded our coinfection studies by examining the respective abilities of Chlamydia and Toxoplasma to co-opt the host cytoskeleton and recruit organelles. We demonstrate that the two pathogen-containing vacuoles migrate independently to the host perinuclear region and rearrange the host microtubular network around each vacuole. However, Toxoplasma outcompetes Chlamydia to the host microtubule-organizing center to the detriment of the bacterium, which then shifts to a stress-induced persistent state. Solely in cells preinfected with Chlamydia, the centrosomes become associated with the chlamydial inclusion, while the Toxoplasma parasitophorous vacuole displays growth defects. Both pathogens fragment the host Golgi apparatus and recruit Golgi elements to retrieve sphingolipids. This study demonstrates that the productive infection by both Chlamydia and Toxoplasma depends on the capability of each pathogen to successfully adhere to a finely tuned developmental program that aims to remodel the host cell for the pathogen''s benefit. In particular, this investigation emphasizes the essentiality of host organelle interception by intravacuolar pathogens to facilitate access to nutrients.  相似文献   

10.
11.
Chlamydiae are obligate intracellular bacteria that replicate within a non-acidified vacuole called an inclusion. Chlamydia psittaci (strain GPIC) produces a 39 kDa protein (IncA) that is localized to the inclusion membrane. While IncA is present as a single 39 kDa species in purified reticulate bodies, two additional higher M r forms are found in C. psittaci -infected cells. This finding suggested that IncA may be post-translationally modified in the host cell. Here we present evidence that IncA is a serine/threonine phosphoprotein that is phosphorylated by host cell enzymes. This conclusion is supported by the following experimental findings: (i) treatment of infected cells with inhibitors of host cell phosphatases or kinases altered the electrophoretic migration pattern of IncA; (ii) treatment with calf intestinal alkaline phosphatase eliminated the multiple-banding pattern of IncA, leaving only the protein band with the lowest relative molecular weight; and (iii) radioimmunoprecipitation of lysates of [32P]-orthophosphate-labelled infected HeLa cells with anti-IncA antisera demonstrated that the two highest M r IncA bands were phosphorylated. A vaccinia-virus recombinant expressing incA was used to determine if HeLa cells can phosphorylate IncA in the absence of a chlamydial background. IncA in lysates of these cells migrated identically to that seen in C. psittaci -infected cells, indicating the host cell was responsible for the phosphorylation of the protein. Microinjection of fluorescently labelled anti-IncA antibodies into C. psittaci -infected HeLa cells resulted in immunostaining of the outer face of the inclusion membrane. Collectively, these results demonstrate that IncA is phosphorylated by the host cell, and regions of IncA are exposed at the cytoplasmic face of the inclusion.  相似文献   

12.
Chlamydia trachomatis serovars D-K are obligate intracellular bacteria that have tropism for the columnar epithelial cells of the genital tract. Chlamydia trachomatis infection has been reported to induce modifications in immune cell ligand expression on epithelial host cells. In this study, we used an in vitro infection model that resulted in a partial infection of C. trachomatis-exposed primary-like immortalized endocervical epithelial cells (A2EN). Using this model, we demonstrated that expression of the natural killer (NK) cell activating ligand, MHC class I-related protein A (MICA), was upregulated on C. trachomatis-infected, but not on noninfected bystander cells. MICA upregulation was concomitant with MHC class I downregulation and impacted the susceptibility of C. trachomatis-infected cells to NK cell activity. The specificity of MICA upregulation was reflected by a higher cytolytic activity of an NK cell line (NK92MI) against C. trachomatis-infected cells compared with uninfected control cells. Significantly, data also indicated that NK cells exerted a partial, but incomplete sterilizing effect on C. trachomatis as shown by the reduction in recoverable inclusion forming units (IFU) when cocultured with C. trachomatis-infected cells. Taken together, our data suggest that NK cells may play a significant role in the ability of the host to counter C. trachomatis infection.  相似文献   

13.
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that is the most common cause of sexually transmitted bacterial infections and is the etiological agent of trachoma, the leading cause of preventable blindness. The organism infects epithelial cells of the genital tract and eyelid resulting in a damaging inflammatory response. Chlamydia trachomatis grows within a vacuole termed the inclusion, and its growth depends on numerous host factors, including lipids. Although a variety of mechanisms are involved in the acquisition of host cell cholesterol and glycosphingolipids by C. trachomatis, none of the previously documented pathways for lipid acquisition are absolutely required for growth. Here we demonstrate that multiple components of the host high‐density lipoprotein (HDL) biogenesis machinery including the lipid effluxers, ABCA1 and CLA 1, and their extracellular lipid acceptor, apoA‐1, are recruited to the inclusion of C. trachomatis‐infected cells. Furthermore, the apoA‐1 that accumulates within the inclusion colocalizes with pools of phosphatidylcholine. Knockdown of ABCA1, which mediates the cellular efflux of cholesterol and phospholipids to initiate the formation of HDL in the serum, prevents the growth of C. trachomatis in infected HeLa cells. In addition, drugs that inhibit the lipid transport activities of ABCA1 and CLA 1 also inhibit the recruitment of phospholipids to the inclusion and prevent chlamydial growth.These results strongly suggest that C. trachomatis co‐opts the host cell lipid transport system involved in the formation of HDL to acquire lipids, such as phosphatidylcholine, that are necessary for growth.  相似文献   

14.
15.
Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.  相似文献   

16.
The obligate intracellular bacterium Chlamydia elicits a great burden on global public health. C. trachomatis is the leading bacterial cause of sexually transmitted infection and also the primary cause of preventable blindness in the world. An essential determinant for successful infection of host cells by Chlamydia is the bacterium''s ability to manipulate host cell signaling from within a novel, vacuolar compartment called the inclusion. From within the inclusion, Chlamydia acquire nutrients required for their 2-3 day developmental growth, and they additionally secrete a panel of effector proteins onto the cytosolic face of the vacuole membrane and into the host cytosol. Gaps in our understanding of Chlamydia biology, however, present significant challenges for visualizing and analyzing this intracellular compartment. Recently, a reverse-imaging strategy for visualizing the inclusion using GFP expressing host cells was described. This approach rationally exploits the intrinsic impermeability of the inclusion membrane to large molecules such as GFP. In this work, we describe how GFP- or mCherry-expressing host cells are generated for subsequent visualization of chlamydial inclusions. Furthermore, this method is shown to effectively substitute for costly antibody-based enumeration methods, can be used in tandem with other fluorescent labels, such as GFP-expressing Chlamydia, and can be exploited to derive key quantitative data about inclusion membrane growth from a range of Chlamydia species and strains.  相似文献   

17.
Genome and proteome analysis of Chlamydia   总被引:2,自引:0,他引:2  
  相似文献   

18.
Inhibition of protein kinase C (PKC) activity in transformed cells and tumor cells containing activated p21(RAS) results in apoptosis. To investigate the pro-apoptotic pathway induced by the p21(RAS) oncoprotein, we first identified the specific PKC isozyme necessary to prevent apoptosis in the presence of activated p21(RAS). Dominant-negative mutants of PKC, short interfering RNA vectors, and PKC isozyme-specific chemical inhibitors directed against the PKCdelta isozyme demonstrated that PKCdelta plays a critical role in p21(RAS)-mediated apoptosis. An activating p21(RAS) mutation, or activation of the phosphatidylinositol 3-kinase (PI3K) Ras effector pathway, increased the levels of PKCdelta protein and activity in cells, whereas inhibition of p21(RAS) activity decreased the expression of the PKCdelta protein. Activation of the Akt survival pathway by oncogenic Ras required PKCdelta activity. Akt activity was dramatically decreased after PKCdelta suppression in cells containing activated p21(RAS). Conversely, constitutively activated Akt rescued cells from apoptosis induced by PKCdelta inhibition. Collectively, these findings demonstrate that p21(RAS), through its downstream effector PI3K, induces PKCdelta expression and that this increase in PKCdelta activity, acting through Akt, is required for cell survival. The p21(RAS) effector molecule responsible for the initiation of the apoptotic signal after suppression of PKCdelta activity was also determined to be PI3K. PI3K (p110(C)(AAX), where AA is aliphatic amino acid) was sufficient for induction of apoptosis after PKCdelta inhibition. Thus, the same p21(RAS) effector, PI3K, is responsible for delivering both a pro-apoptotic signal and a survival signal, the latter being mediated by PKCdelta and Akt. Selective suppression of PKCdelta activity and consequent induction of apoptosis is a potential strategy for targeting of tumor cells containing an activated p21(RAS).  相似文献   

19.
Chlamydia species are obligate intracellular pathogens that are important causes of human genital tract, ocular and respiratory infections. The bacteria replicate within a specialized membrane-bound compartment termed the inclusion and require host-derived lipids for intracellular growth and development. Emerging evidence indicates that Chlamydia has evolved clever strategies to fulfil its lipid needs by interacting with multiple host cell compartments and redirecting trafficking pathways to its intracellular niche. In this review, we highlight recent findings that have significantly expanded our understanding of how Chlamydia exploit lipid trafficking pathways to ensure the survival of this important human pathogen.  相似文献   

20.
Chlamydia pneumoniae is a common respiratory pathogen that has been associated with a variety of chronic diseases including asthma and atherosclerosis. Chlamydiae are obligate intracellular parasites that primarily infect epithelial cells where they develop within a membrane-bound vacuole, termed an inclusion. Interactions between the microorganism and eukaryotic cell can be mediated by chlamydial proteins inserted into the inclusion membrane. We describe here a novel C. pneumoniae -specific inclusion membrane protein (Inc) CP0236, which contains domains exposed to the host cytoplasm. We demonstrate that, in a yeast two-hybrid screen, CP0236 interacts with the NFκB activator 1 (Act1) and this interaction was confirmed in HeLa 229 cells where ectopically expressed CP0236 was co-immunoprecipitated with endogenous Act1. Furthermore, we demonstrate that Act1 displays an altered distribution in the cytoplasm of HeLa cells infected with C. pneumoniae where it associates with the chlamydial inclusion membrane. This sequestration of Act1 by chlamydiae inhibited recruitment of the protein to the interleukin-17 (IL-17) receptor upon stimulation of C. pneumoniae -infected cells with IL-17A. Such inhibition of the IL-17 signalling pathway led to protection of Chlamydia -infected cells from NFκB activation in IL-17-stimulated cells. We describe here a unique strategy employed by C. pneumoniae to achieve inhibition of NFκB activation via interaction of CP0236 with mammalian Act1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号