首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Toll-like receptor (TLR) 2 has recently been associated with cellular responses to numerous microbial products, including LPS and bacterial lipoproteins. However, many preparations of LPS contain low concentrations of highly bioactive contaminants described previously as "endotoxin protein," suggesting that these contaminants could be responsible for the TLR2-mediated signaling observed upon LPS stimulation. To test this hypothesis, commercial preparations of LPS were subjected to a modified phenol re-extraction protocol to eliminate endotoxin protein. While it did not influence the ability to stimulate cells from wild-type mice, repurification eliminated the ability of LPS to activate cells from C3H/HeJ (Lpsd) mice. Additionally, only cell lines transfected with human TLR4, but not human or murine TLR2, acquired responsiveness to both re-extracted LPS and to a protein-free, synthetic preparation of lipid A. These results suggest that neither human nor murine TLR2 plays a role in LPS signaling in the absence of contaminating endotoxin protein.  相似文献   

2.
Most published studies of thermoregulatory responses of mice to LPS involved a stressful injection of LPS, were run at a poorly controlled and often subneutral ambient temperature (T(a)), and paid little attention to the dependence of the response on the LPS dose. These pitfalls have been overcome in the present study. Male C57BL/6 mice implanted with jugular vein catheters were kept in an environmental chamber at a tightly controlled T(a). The relationship between the T(a)s used and the thermoneutral zone of the mice was verified by measuring tail skin temperature, either by infrared thermography or thermocouple thermometry. Escherichia coli LPS in a wide dose range (10(0)-10(4) microg/kg) was administered through an extension of the jugular catheter from outside the chamber. The responses observed were dose dependent. At a neutral T(a), low (just suprathreshold) doses of LPS (10(0)-10(1) microg/kg) caused a monophasic fever. To a slightly higher dose (10(1.5) microg/kg), the mice responded with a biphasic fever. To even higher doses (10(1.75)-10(4) microg/kg), they responded with a polyphasic fever, of which three distinct phases were identified. The dose dependence and dynamics of LPS fever in the mouse appeared to be remarkably similar to those seen in the rat. However, the thermoregulatory response of mice to LPS in a subthermoneutral environment is remarkably different from that of rats. Although very high doses of LPS (10(4) microg/kg) did cause a late (latency, approximately 3 h) hypothermic response in mice, the typical early (latency, 10-30 min) hypothermic response seen in rats did not occur. The present investigation identifies experimental conditions to study LPS-induced mono-, bi-, and polyphasic fevers and late hypothermia in mice and provides detailed characteristics of these responses.  相似文献   

3.
Previous studies on the role of cyclooxygenase (COX)-1 and -2 in fever induced by intravenous LPS have failed to investigate the role of these isoenzymes in the earliest responses: monophasic fever (response to a low, near-threshold dose of LPS) and the first phase of polyphasic fever (response to higher doses). We studied these responses in 96 mice that were COX-1 or COX-2 deficient (-/-) or sufficient (+/+). Each mouse was implanted with a temperature telemetry probe into the peritoneal cavity and a jugular catheter. The study was conducted at a tightly controlled, neutral ambient temperature (31 degrees C). To avoid stress hyperthermia (which masks the onset of fever), all injections were performed through a catheter extension. The +/+ mice responded to intravenous saline with no change in deep body temperature. To a low dose of LPS (1 microg/kg iv), they responded with a monophasic fever. To a higher dose (56 microg/kg), they responded with a polyphasic fever. Neither monophasic fever nor the first phase of polyphasic fever was attenuated in the COX-1 -/- mice, but both responses were absent in the COX-2 -/- mice. The second and third phases of polyphasic fever were also missing in the COX-2 -/- mice. The present study identifies a new, critical role for COX-2 in the mediation of the earliest responses to intravenous LPS: monophasic fever and the first phase of polyphasic fever. It also suggests that no product of the COX-1 gene, including the splice variant COX-1b (COX-3), is essential for these responses.  相似文献   

4.
Bacterial LPS and TNF induce vascular endothelial cells to express a variety of response molecules. LPS that is partially deacylated (dLPS) by a human neutrophil enzyme blocks the ability of LPS, but not TNF, to augment one of these responses, the expression of endothelial cell surface molecules that promote neutrophil adherence (J. Exp. Med. 1987; 165:1393-1402). We show that dLPS can inhibit the ability of LPS, but not TNF, to elicit the expression of plasminogen activator inhibitor-1 (PAI-1), prostacyclin, and PGE2 by human umbilical vein endothelial cells. dLPS also prevented the accumulation of specific PAI-1 mRNA in response to LPS, but not to TNF. Neither the LPS- or TNF-induced expression of PAI-1 nor the dLPS inhibition of the LPS response was mediated by prostanoids. These results indicate that dLPS can specifically block a variety of endothelial cell responses to LPS and provide support for the hypotheses 1) that dLPS and LPS may interact with a common target molecule on or in endothelial cells, and 2) that dLPS, produced by enzymatic deacylation of LPS in vivo, could inhibit endothelial cell stimulation by LPS and thereby limit the host inflammatory response to invasive gram-negative bacteria.  相似文献   

5.
Bacterial lipopolysaccharide (LPS) is recognized by several receptors, including the toll-like receptor (TLR) 4, on various cells. Among many biological responses to LPS is fever, an often polyphasic rise in body temperature that is thought to be mediated by prostaglandin (PG) E2. Which receptors on which cells are linked to fever production is unknown. It is also unknown which cells produce PGE2 that triggers the earliest (first) phase of fever. Two recent studies from our group answer these questions. In the first one, we studied LPS-induced fever in mouse chimeras selectively lacking the TLR4 in hematopoietic or nonhematopoietic cells. We found that the first phase of fever is triggered via the TLR4 on hematopoietic cells. In the second study, we investigated LPS fever in rats. We found that the number of cells expressing cyclooxygenase (COX)-2, a PGE2-synthesizing enzyme, surged at the onset of fever in the lung and liver (but not in the brain), and that most of these cells were macrophages. Because LPS-induced PGE2 production in macrophages is TLR4-dependent, it is tempting to speculate that the TLR4-bearing, bone marrow-derived cells implicated in fever pathogenesis by the first study are the same as the COX-2-positive macrophages identified in the second study. Hence, pulmonary and hepatic macrophages that recognize LPS via the TLR4 and rapidly produce PGE2 are likely triggers of the fever response.  相似文献   

6.
How infection precipitates depressed contractility is incompletely understood but may involve the immune, nervous, and endocrine systems as well as the heart itself. In this study, we examined the role of Toll-like receptor 4 (TLR4) in LPS-induced myocardial contractile depression. Eighteen hours following endotoxin challenge, we compared contractile responses in hearts from wild-type (WT) and TLR4-deficient mice using modified Langendorff preparations. Unlike hearts from WT mice, TLR4-deficient hearts did not reveal significant contractile dysfunction following LPS administration, as measured by decreased responses in maximal left ventricular pressure, +dP/dtmax, and -dP/dtmax in ex vivo Langendorff preparations. These findings indicate a requirement for TLR4 in LPS-induced contractile depression. To determine the contribution of bone marrow-derived TLR4 function to LPS-induced myocardial dysfunction, we generated TLR4 chimeras using adoptive transfer between histocompatible mouse strains: either TLR4-deficient mice with TLR4+/+ bone marrow-derived cells or TLR4+/+ animals lacking TLR4 in their hematopoietic cells. We then compared the contractile responses of engrafted animals after LPS challenges. Engraftment of TLR4-deficient mice with WT marrow restored sensitivity to the myocardial depressant effects of LPS in TLR4-deficient hearts (P < 0.05). Inactivation of bone marrow-derived TLR4 function, via transplantation of WT mice with TLR4-/- marrow, however, did not protect against the depressant effect of endotoxin. These findings indicate that bone marrow-derived TLR4 activity is sufficient to confer sensitivity to mice lacking TLR4 in all other tissues. However, because inactivation of marrow-derived TLR4 function alone does not protect against endotoxin-triggered contractile dysfunction, TLR4 function in other tissues may also contribute to this response.  相似文献   

7.
DNA vaccine represents a novel method to elicit immunity against infectious disease. Lipopolysaccharide (LPS) copurified with plasmid DNA may affect therapeutic efficacy and immunological response. We aimed to study the effect of LPS on the therapeutic efficacy of HER-2/neu DNA vaccine in a mouse tumor animal model. Plasmid DNA purified from commercial EndoFree plasmid purification kits functioned as a better therapeutic DNA vaccine than that purified from Non-EndoFree purification kit, which contains >or=0.5 microg LPS per 100 mg DNA plasmid. To further investigate the effect of LPS on the therapeutic efficacy of DNA vaccine, increasing amount of LPS was added to endotoxin-free plasmid DNA, and inoculated on mice with established tumors. One mug of LPS significantly attenuated the therapeutic effect of neu DNA vaccine and increased Th2 immune responses bias with interleukin-4 cytokine production. In contrast, high amount (100 microg) of LPS enhanced the therapeutic efficacy of neu DNA vaccine with an increase of cytotoxic T lymphocyte response and Th1 immune response. The effect of LPS on DNA vaccine was diminished when the tumor was grown in toll-like receptor 4 (TLR4)-mutant C3H/HeJ mice. Our results indicate that variation in the LPS doses exerts opposing effects on the therapeutic efficacy of DNA vaccine, and the observed effect is TLR4 dependent.  相似文献   

8.
TLR4 is the signaling but not the lipopolysaccharide uptake receptor   总被引:5,自引:0,他引:5  
TLR4 is the primary recognition molecule for inflammatory responses initiated by bacterial LPS (endotoxin). Internalization of endotoxin by various cell types is an important step for its removal and detoxification. Because of its role as an LPS-signaling receptor, TLR4 has been suggested to be involved in cellular LPS uptake as well. LPS uptake was investigated in primary monocytes and endothelial cells derived from TLR4 and CD14 knockout C57BL/6 mice using tritiated and fluorescein-labeled LPS. Intracellular LPS distribution was investigated by deconvolution confocal microscopy. We could not observe any difference in LPS uptake and intracellular LPS distribution in either monocytes or endothelial cells between TLR4(-/-) and wild-type cells. As expected, CD14(-/-) monocytes showed a highly impaired LPS uptake, confirming CD14-dependent uptake in monocytes. Upon longer incubation periods, the CD14-deficient monocytes mimicked the LPS uptake pattern of endothelial cells. Endothelial cell LPS uptake is slower than monocyte uptake, LBP rather than CD14 dependent, and sensitive to polyanionic polymers, which have been shown to block scavenger receptor-dependent uptake mechanisms. We conclude that TLR4 is not involved in cellular LPS uptake mechanisms. In membrane CD14-positive cells, LPS is predominantly taken up via CD14-mediated pathways, whereas in the CD14-negative endothelial cells, there is a role for scavenger receptor-dependent pathways.  相似文献   

9.
Enzymatic deacylation of LPS markedly reduces its activity in the dermal Shwartzman reaction. Inasmuch as polymorphonuclear leukocytes (PMN) are involved in the genesis of tissue injury in Shwartzman reactions, we have investigated the effects of deacylated LPS (dLPS) on PMN. Compared to LPS, dLPS was ineffectual as a stimulus of both PMN adherence and release of secondary granule enzymes, and dLPS inhibited specific LPS-induced adherence. Neither LPS nor dLPS caused release of the primary granule enzymes, myeloperoxidase, and elastase. Unlike LPS, dLPS failed to prime PMN for superoxide release when a second stimulus (FMLP, 10(-6) M was given. The mechanism of the LPS induced increase in PMN adherence was investigated, and we found that LPS significantly increased the amount of the adhesive glycoprotein CD11b on the surface of the PMN. dLPS had no effect on CD11b expression. Our results suggest that enzymatic deacylation of LPS profoundly alters its ability to stimulate PMN and deacylation of LPS by inflammatory cells in vivo might be an important mechanism limiting the toxic effects of LPS.  相似文献   

10.
Gram-negative bacteria release LPS, which activates Toll-like-receptor-4 (TLR4) in the host, initiating an inflammatory response to infection. Infection increases risk for thrombosis. Platelets contribute to defense from infection and to thrombosis. Experiments were designed to determine whether LPS, through TLR4 signaling, affects platelet phenotype. Platelet responses in wild-type (WT) mice and mice that lack the TLR4 gene (dTLR4) were compared following a single nonlethal injection of LPS (0.2 mg/kg iv). Compared with WT mice, mice without TLR4 had fewer circulating platelets with lower RNA content and were less responsive to thrombin-activated expression of P-selectin but were equally sensitive to aggregation or ATP secretion. One week following the LPS injection, the time it takes for the circulating platelet pool to turnover, the number of circulating platelets, thrombin-induced expression of P-selectin, and collagen-activated aggregation were increased comparably in both groups of mice. Therefore, the change of the platelet pool to an activated phenotype 1 wk after a single exposure to LPS appears to arise from a process that is independent of TLR4. The persistence of the effect 1 wk after the injection suggests that the changes reflect an action of LPS on megakaryocytes and their platelet progeny rather than on circulating platelets, which would have been cleared.  相似文献   

11.
Helminths are immune modulators that down-regulate colitis in inflammatory bowel disease. In animal models, intestinal bacteria drive colitis and in humans certain alleles of the LPS receptor protein TLR4 increase inflammatory bowel disease susceptibility. To understand helminthic immune modulation in the gut, we studied the influence of intestinal Heligmosomoides polygyrus colonization on LPS-induced lamina propria mononuclear cell (LPMC) cytokine responses in mice. LPS did not stimulate TGFbeta production from LPMC of uninfected mice. LPS strongly induced LPMC from worm-infected animals to secrete TGFbeta, but not TNF-alpha or IL-12. The TGFbeta derived from mucosal T cells. Helminth infection up-regulated TLR4 expression only in lamina propria T cells. LPMC from worm-infected TLR4 mutant animals did not respond to LPS, suggesting that LPS required TLR4 to stimulate TGFbeta secretion. Thus, during helminth infection, LPS challenge induces mucosal T cells to make TGFbeta through a TLR4-dependent process without promoting synthesis of proinflammatory cytokines.  相似文献   

12.
Toll-like receptors (TLRs) have recently been identified as fundamental components of the innate immune response to bacterial pathogens. We investigated the role of TLR signaling in immune defense of the mucosal epithelial cells of the lower female genital tract. This site provides first line defense against microbial pathogens while remaining tolerant to a complex biosystem of resident microbiota. Epithelial cells derived from normal human vagina, ectocervix, and endocervix expressed mRNA for TLR1, -2, -3, -5, and -6. However, they failed to express TLR4 as well as MD2, two essential components of the receptor complex for LPS in phagocytes and endothelial cells. Consistent with this, endocervical epithelial cells were unresponsive to protein-free preparations of lipooligosaccharide from Neisseria gonorrhoeae and LPS from Escherichia coli. However, they were capable of responding to whole Gram-negative bacteria and bacterial lysates, as demonstrated by NF-kappaB activation and proinflammatory cytokine production. The presence of soluble CD14, a high-affinity receptor for LPS and other bacterial ligands, enhanced the sensitivity of genital tract epithelial cells to both low and high concentrations of bacteria, suggesting that soluble CD14 can act as a coreceptor for non-TLR4 ligands. These data demonstrate that the response to N. gonorrhoeae and other Gram-negative bacteria at the mucosal surface of the female genital tract occurs in the absence of endotoxin recognition and TLR4-mediated signaling.  相似文献   

13.
Activation of interleukin-1 (IL-1) receptor (IL-1R), Toll-like receptor 2 (TLR2), and TLR4 triggers NF-kappaB and mitogen-activated protein kinase (MAPK)-dependent signaling, thereby initiating immune responses. Tollip has been implicated as a negative regulator of NF-kappaB signaling triggered by these receptors in in vitro studies. Here, deficient mice were used to determine the physiological contribution of Tollip to immunity. NF-kappaB, as well as MAPK, signaling appeared normal in Tollip-deficient cells stimulated with IL-1beta or the TLR4 ligand lipopolysaccharide (LPS). Similarly, IL-1beta- and TLR-driven activation of dendritic cells and lymphocytes was indistinguishable from wild-type cells. In contrast, the production of the proinflammatory cytokines, IL-6 and tumor necrosis factor alpha was significantly reduced after IL-1beta and LPS treatment at low doses but not at lethal doses of LPS. Tollip therefore controls the magnitude of inflammatory cytokine production in response to IL-1beta and LPS.  相似文献   

14.
Heat shock proteins (Hsp) 60 and 70 have been intensively studied for their ability to activate innate immunity. Heat shock proteins had been shown to induce the activation of dendritic cells, T cells, and B cells. However, the possible contamination of endotoxin in heat shock protein preparations makes their function as an activator of immune system ambiguous. Here, we examined the ability of bacterial Hsp60 and Hsp70 to activate Jurkat T cells and primary T cells. We found that Burkholderia pseudomallei Hsp70 and Mycobacterium tuberculosis Hsp70 could costimulate Jurkat T cells to make IL-2 and signal through TLR5. This costimulatory activity is not due to endotoxin or contaminants signaling via TLR2 nor TLR4. However, recombinant Hsp70 expressed in Escherichia coli DeltafliC strain completely lost its ability to costimulate T cells. Thus, the activation of T cells by recombinant Hsp70 is ascribed to flagellin contamination.  相似文献   

15.
Bacterial lipopolysaccharides (LPS), also termed endotoxins, considered to be a major virulence factor, are responsible for the lethal effects and clinical manifestations of diseases in humans and animals. Higher animals are extremely sensitive to endotoxin even at low doses but lower vertebrates like fish are often resistant to endotoxic shock. Toll-like receptor (TLR)-4 is mainly involved in the activation of the immune system by LPS through the specific recognition of its endotoxin (Lipid A) moiety. Although several Toll-like receptors are present in fish, those molecules specifically involved in TLR-4 mediated endotoxin recognition have not been fully established in different fish species. Despite this, LPS has the potency to express cytokines, acute-phase proteins and also exerts immunological, pathological, physiological, immuno-endocrinological and neuro-immunological effects in several fish species. The immunostimulating effects of endotoxin by triggering various immune parameters such as T and B lymphocytes, macrophages, and complement systems have been established in teleosts. This article reviews the multiple biological effects of endotoxin which will further strengthen the knowledge among researchers on various aspects of endotoxin in lower vertebrates, particularly in the piscine system.  相似文献   

16.
The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-kappaB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.  相似文献   

17.
LPS, a molecule produced by Gram-negative bacteria, is known to activate both innate immune cells such as macrophages and adaptive immune B cells via TLR4 signaling. Although TLR4 is also expressed on T cells, LPS was observed not to affect T cell proliferation or cytokine secretion. We now report, however, that LPS can induce human T cells to adhere to fibronectin via TLR4 signaling. This response to LPS was confirmed in mouse T cells; functional TLR4 and MyD88 were required, but T cells from TLR2 knockout mice could respond to LPS. The human T cell response to LPS depended on protein kinase C signaling and involved the phosphorylation of the proline-rich tyrosine kinase (Pyk-2) and p38. LPS also up-regulated the T cell expression of suppressor of cytokine signaling 3, which led to inhibition of T cell chemotaxis toward the chemokine stromal cell-derived factor 1alpha (CXCL12). Thus, LPS, through TLR4 signaling, can affect T cell behavior in inflammation.  相似文献   

18.
Norepinephrine (NE) microdialyzed in the preoptic area (POA) raises core temperature (T(c)) via 1) alpha(1)-adrenoceptors (AR), quickly and independently of POA PGE(2), and 2) alpha(2)-AR, after a delay and PGE(2) dependently. Since systemic lipopolysaccharide (LPS) activates the central noradrenergic system, we investigated whether preoptic NE mediates LPS fever. We injected LPS (2 microg/kg iv) in guinea pigs prepared with intra-POA microdialysis probes and determined POA cerebrospinal (CSF) NE levels. We similarly microdialyzed prazosin (alpha(1) blocker, 1 microg/microl), yohimbine (alpha(2) blocker, 1 microg/microl), SC-560 [cyclooxygenase (COX)-1 blocker, 5 microg/microl], acetaminophen (presumptive COX-1v blocker, 5 microg/microl), or MK-0663 (COX-2 blocker, 0.5 microg/microl) in other animals before intravenous LPS and measured CSF PGE(2). All of the agents were perfused at 2 microg/min for 6 h. T(c) was monitored constantly. POA NE peaked within 30 min after LPS and then returned to baseline over the next 90 min. T(c) increased within 12 min to a first peak at approximately 60 min and to a second at approximately 150 min and then declined over the following 2.5 h. POA PGE(2) followed a concurrent course. Prazosin pretreatment eliminated the first T(c) rise but not the second; PGE(2) rose normally. Yohimbine pretreatment did not affect the first T(c) rise, which continued unchanged for 6 h; the second rise, however, was absent, and PGE(2) levels did not increase. SC-560 and acetaminophen did not alter the LPS-induced PGE(2) and T(c) rises; MK-0663 prevented both the late PGE(2) and T(c) rises. These results confirm that POA NE is pivotal in the development of LPS fever.  相似文献   

19.
MD-2 is an essential component of endotoxin (LPS) sensing, binding LPS independently and when bound to the ectodomain of the membrane receptor TLR4. Natural variation of proteins involved in the LPS-recognition cascade such as the LPS-binding protein, CD14, and TLR4, as well as proteins involved in intracellular signaling downstream of LPS binding, affect the cellular response to endotoxin and host defense against bacterial infections. We now describe the functional properties of two nonsynonymous coding polymorphisms of MD-2, G56R and P157S, documented in HapMap. As predicted from the MD-2 structure, the P157S mutation had little or no effect on MD-2 function. In contrast, the G56R mutation, located close to the LPS-binding pocket, significantly decreased cellular responsiveness to LPS. Soluble G56R MD-2 showed markedly reduced LPS binding that was to a large degree rescued by TLR4 coexpression or presence of TLR4 ectodomain. Thus, cells that express TLR4 without MD-2 and whose response to LPS depends on ectopically produced MD-2 were most affected by expression of the G56R variant of MD-2. Coexpression of wild-type and G56R MD-2 yielded an intermediate phenotype with responses to LPS diminished to a greater extent than that resulting from expression of the D299G TLR4 polymorphic variant.  相似文献   

20.
Central nervous system (CNS) infection and inflammation severely reduce the capacity of cytochrome P-450 metabolism in the liver. We developed a mouse model to examine the effects of CNS inflammation on hepatic cytochrome P-450 metabolism. FVB, C57BL/6, and C3H/HeouJ mice were given Escherichia coli LPS (2.5 microg) by intracerebroventricular (ICV) injection. The CNS inflammatory response was confirmed by the elevation of TNF-alpha and/or IL-1beta proteins in the brain. In all mouse strains, LPS produced a 60-70% loss in hepatic Cyp3a11 expression and activity compared with saline-injected controls. Adrenalectomy did not prevent the loss in Cyp3a11 expression or activity, thereby precluding the involvement of the hypothalamic-adrenal-pituitary axis. Endotoxin was detectable (1-10 ng/ml) in serum between 15 and 120 min after ICV dosing of 2.5 microg LPS. Peripheral administration of 2.5 microg LPS by intraperitoneal injection produced similar serum endotoxin levels and a similar loss (60%) in Cyp3a11 expression and activity in the liver. The loss of Cyp3a11 in response to centrally or peripherally administered LPS could not be evoked in Toll-like receptor-4 (TLR4)-mutant (C3H/HeJ) mice, indicating that TLR4 signaling pathways are directly involved in the enzyme loss. In summary, we conclude that LPS is transferred from the brain to the circulation in significant quantities in a model of CNS infection or inflammation. Subsequently, LPS that has reached the circulation stimulates a TLR4-dependent mechanism in the periphery, evoking a reduction in Cyp3a11 expression and metabolism in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号