首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Understanding how arterial remodeling changes the mechanical behavior of pulmonary arteries (PAs) is important to the evaluation of pulmonary vascular function. Early and current efforts have focused on the arteries' histological changes, their mechanical properties under in vitro mechanical testing, and their zero-stress and no-load states. However, the linkage between the histology and mechanical behavior is still not well understood. To explore this linkage, we investigated the geometry, residual stretch, and histology of proximal PAs in both adult rat and neonatal calf hypoxic models of pulmonary hypertension (PH), compared their changes due to chronic hypoxia across species, and proposed a two-layer mechanical model of artery to relate the opening angle to the stiffness ratio of the PA outer to inner layer. We found that the proximal PA remodeling in calves was quite different from that in rats. In rats, the arterial wall thickness, inner diameter, and outer layer thickness fraction all increased dramatically in PH and the opening angle decreased significantly, whereas in calves, only the arterial wall thickness increased in PH. The proposed model predicted that the stiffness ratio of the calf proximal PAs changed very little from control to hypertensive group, while the decrease of opening angle in rat proximal PAs in response to chronic hypoxia was approximately linear to the increase of the stiffness ratio. We conclude that the arterial remodeling in rat and calf proximal PAs is different and the change of opening angle can be linked to the change of the arterial histological structure and mechanics.  相似文献   

3.
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.  相似文献   

4.
5.

Background

CXCR4 is the receptor for chemokine CXCL12 and reportedly plays an important role in systemic vascular repair and remodeling, but the role of CXCR4 in development of pulmonary hypertension and vascular remodeling has not been fully understood.

Methods

In this study we investigated the role of CXCR4 in the development of pulmonary hypertension and vascular remodeling by using a CXCR4 inhibitor AMD3100 and by electroporation of CXCR4 shRNA into bone marrow cells and then transplantation of the bone marrow cells into rats.

Results

We found that the CXCR4 inhibitor significantly decreased chronic hypoxia-induced pulmonary hypertension and vascular remodeling in rats and, most importantly, we found that the rats that were transplanted with the bone marrow cells electroporated with CXCR4 shRNA had significantly lower mean pulmonary pressure (mPAP), ratio of right ventricular weight to left ventricular plus septal weight (RV/(LV+S)) and wall thickness of pulmonary artery induced by chronic hypoxia as compared with control rats.

Conclusions

The hypothesis that CXCR4 is critical in hypoxic pulmonary hypertension in rats has been demonstrated. The present study not only has shown an inhibitory effect caused by systemic inhibition of CXCR4 activity on pulmonary hypertension, but more importantly also has revealed that specific inhibition of the CXCR4 in bone marrow cells can reduce pulmonary hypertension and vascular remodeling via decreasing bone marrow derived cell recruitment to the lung in hypoxia. This study suggests a novel therapeutic approach for pulmonary hypertension by inhibiting bone marrow derived cell recruitment.  相似文献   

6.
Hypoxia-inducible factor-1alpha subunit (HIF-1alpha) plays a pivotal role during the development of hypoxia-induced pulmonary hypertension (HPH) by transactivating it' target genes. As an oxygen-sensitive attenuator, factor inhibiting HIF-1 (FIH) hydroxylates a conserved asparagine residue within the C-terminal transactivation domain of HIF-1alpha under normoxia and moderate hypoxia. FIH protein is downregulated in response to hypoxia, but its dynamic expression and role during the development of HPH remains unclear. In this study, an HPH rat model was established. The mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. The pulmonary artery remodeling index became evident after 7 d of hypoxia, while the right ventricular hypertrophy index became significant after 14 d of hypoxia. The messenger RNA (mRNA) and protein expression of HIF-1alpha and vascular endothelial growth factor (VEGF), a well-characterized target gene of HIF-1alpha, were markedly upregulated after exposure to hypoxia in pulmonary arteries. FIH protein in lung tissues declined after 7 d of hypoxia and continued to decline through the duration of hypoxia. FIH mRNA had few changes after exposure to hypoxia compared with after exposure to normoxia. In hypoxic rats, FIH protein showed significant negative correlation with VEGF mRNA and VEGF protein. FIH protein was negatively correlated with mean pulmonary arterial pressure, pulmonary artery remodeling index and right ventricular hypertrophy index. Taken together, our results suggest that, in the pulmonary arteries of rat exposed to moderate hypoxia, a time-dependent decrease in FIH protein may contribute to the development of rat HPH by enhancing the transactivation of HIF-1alpha target genes such as VEGF.  相似文献   

7.
Quantifying the time course of load-induced changes in arterial wall geometry, microstructure, and properties is fundamental to developing mathematical models of growth and remodeling. Arteries adapt to altered pressure and flow by modifying wall thickness, inner diameter, and axial length via marked cell and matrix turnover. To estimate particular biomaterial implications of such adaptations, we used a 4-fiber family constitutive relation to quantify passive biaxial mechanical behaviors of mouse carotid arteries 0 (control), 7-10, 10-14, or 35-56 days after an aortic arch banding surgery that increased pulse pressure and pulsatile flow in the right carotid artery. In vivo circumferential and axial stretches at mean arterial pressure were, for example, 11% and 26% lower, respectively, in hypertensive carotids 35-56 days after banding than in normotensive controls; this finding is consistent with observations that hypertension decreases distensibility. Interestingly, the strain energy W stored in the carotids at individual in vivo conditions was also less in hypertensive compared with normotensive carotids. For example, at 35-56 days after banding, W was 24%, 39%, and 47% of normal values at diastolic, mean, and systolic pressures, respectively. The energy stored during the cardiac cycle, W(sys)-W(dias), also tended to be less, but this reduction did not reach significance. When computed at normal in vivo values of biaxial stretch, however, W was well above normal for the hypertensive carotids. This net increase resulted from an overall increase in the collagen-related anisotropic contribution to W despite a decrease in the elastin-related isotropic contribution. The latter was consistent with observed decreases in the mass fraction of elastin.  相似文献   

8.
Hypoxia-inducible factor (HIF)-α subunits (HIF-1α,HIF-2α and HIF-3α),which play a pivotalrole during the development of hypoxia-induced pulmonary hypertension (HPH),are regulated through post-U'anslational hydroxylation by their three prolyl hydroxylase domain-containing proteins (PHD 1,PHD2 and PHD3).PHDs could also be regulated by HIF.But differential and reciprocal regulation between HIF-α and PHDs duringthe development of HPH remains unclear.To investigate this problem,a rat HPH model was established.Meanpulmonary arterial pressure increased significantly after 7 d of hypoxia.Pulmonary artery remodeling indexand right ventricular hypertrophy became evident after 14 d of hypoxia.HIF-1α and HIF-2α mRNA increasedslightly after 7 d of hypoxia,but HIF-3α increased significantly after 3 d of hypoxia.The protein expressionlevels of all three HIF-α were markedly upregulated after exposure to hypoxia.PHD2 mRNA and proteinexpression levels were upregulated after 3 d of hypoxia;PHD 1 protein declined after 14 d of hypoxia withoutsignificant mRNA changes.PHD3 mRNA and protein were markedly upregulated after 3 d of hypoxia,then themRNA remained at a high level,but the protein declined after 14 d of hypoxia.In hypoxic animals,HIF-lotproteins negatively correlated with PHD2 proteins,whereas HIF-2α and HIF-3α proteins showed negativecorrelations with PHD3 and PHD 1 proteins,respectively.All three HIF-α proteins were positively correlatedwith PHD2 and PHD3 mRNA.In the present study,HIF-α subunits and PHDs showed differential andreciprocal regulation,and this might play a key pathogenesis role in hypoxia-induced pulmonary hypertension.  相似文献   

9.
AbstractTo test the hypothesis that hypoxia inducible factor-1 alpha (HIF-1α)up-regulated theexpression of heme oxygenase-1 (HO-1) gene in pulmonary arteries of rats with hypoxia-induced pulmonaryhypertension, 8 male Wistar rats in each of 5 groups were exposed to hypoxia for 0, 3, 7, 14 or 21 d, respectively.Mean pulmonary arterial pressure (mPAP), vessel morphometry and right ventricle hypertrophy index weremeasured. Lungs were inflation fixed for immunohistochemistry, in situ hybridization; frozen for latermeasurement of HO-1 enzyme activity, mPAP increased significantly after 7 d of hypoxia [(18.4 ± 0.4)mmHg, P<0.05], reaching its peak after 14 d of hypoxia, then remained stable. Pulmonary artery remodeling became to develop significantly after 14 d of hypoxia. HIF-1αprotein in control was poorly positive (0.05 ±0.01), but was up-regulated in pulmonary arterial tunica intima of all hypoxic rats. In pulmonary arterialtunica media, the levels of HIF-la protein were markedly up-regulated after 3 d and 7 d of hypoxia(0.20±0.02; 0.22 ± 0.02, P<0.05), then declined after 14 d and 21 d of hypoxia. HIF-mRNA stainingwas poorly positive in control, hypoxia for 3 and 7 d, but enhanced significantly after 14 d of hypoxia(0.20±0.02, P<0.05), then remained stable. HO-1 protein increased after 7 d of hypoxia (0.10±0.01,P<0.05), reaching its peak after 14 d of hypoxia (0.21 0.02, P<0.05), then remained stable. HO-1 mRNA increased after 3 d of hypoxia, reaching its peak after 7 d of hypoxia (0.17 ± 0.01, P<0.05), then declined.Linear correlation analysis showed that HIF-lα mRNA, HO-1 protein and mPAP were associatedwith pulmonary remodeling. HIF-1 α protein (tunica intima) was conversely correlated with HIF-1α mRNA(r=0.921, P<0.01), HO-1 protein was conversely correlated with HIF-1α protein (tunica intima)(r=0.821, P<0.01 ). HIF-1αand HO-1 were both involved in the pathogenesis of hypoxia-induced pulmonaryhypertension in rat. Hypoxia inducible factor-1 alpha correlated the expression of heme oxygenase 1 genein pulmonary arteries of rat with hypoxia-induced pulmonary hypertension.  相似文献   

10.
Chen YF  Feng JA  Li P  Xing D  Ambalavanan N  Oparil S 《Life sciences》2006,79(14):1357-1365
Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model (Nppa-/-) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null (Nppa-/-) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O(2), 1 atm) or air for 6 wks. Measurement: pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa-/- mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa-/- and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa-/- mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-beta-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.  相似文献   

11.
12.
Hypoxia causes abnormal neonatal pulmonary artery remodeling (PAR) and inhibition of alveolar development (IAD). Transforming growth factor (TGF)-beta is an important regulator of lung development and repair from injury. We tested the hypothesis that inhibition of TGF-beta signaling attenuates hypoxia-induced PAR and IAD. Mice with an inducible dominant-negative mutation of the TGF-beta type II receptor (DNTGFbetaRII) and nontransgenic wild-type (WT) mice were exposed to hypoxia (12% O(2)) or air from birth to 14 days of age. Expression of DNTGFbetaRII was induced by 20 microg/g ZnSO(4) given intraperitoneally daily from birth. PAR, IAD, cell proliferation, and expression of extracellular matrix (ECM) proteins were assessed. In WT mice, hypoxia led to thicker, more muscularized resistance pulmonary arteries and impaired alveolarization, accompanied by increases in active TGF-beta and phosphorylated Smad2. Hypoxia-induced PAR and IAD were greatly attenuated in DNTGFbetaRII mice given ZnSO(4) compared with WT control mice and DNTGFbetaRII mice not given ZnSO(4). The stimulatory effects of hypoxic exposure on pulmonary arterial cell proliferation and lung ECM proteins were abrogated in DNTGFbetaRII mice given ZnSO(4). These data support the conclusion that TGF-beta plays an important role in hypoxia-induced pulmonary vascular adaptation and IAD in the newborn animal model.  相似文献   

13.
There is increasing evidence that inflammation plays a pivotal role in the pathogenesis of some forms of pulmonary hypertension (PH). We recently demonstrated that deficiency of adiponectin (APN) in a mouse model of PH induced by eosinophilic inflammation increases pulmonary arterial remodeling, pulmonary pressures, and the accumulation of eosinophils in the lung. Based on these data, we hypothesized that APN deficiency exacerbates PH indirectly by increasing eosinophil recruitment. Herein, we examined the role of eosinophils in the development of inflammation-induced PH. Elimination of eosinophils in APN-deficient mice by treatment with anti-interleukin-5 antibody attenuated pulmonary arterial muscularization and PH. In addition, we observed that transgenic mice that are devoid of eosinophils also do not develop pulmonary arterial muscularization in eosinophilic inflammation-induced PH. To investigate the mechanism by which APN deficiency increased eosinophil accumulation in response to an allergic inflammatory stimulus, we measured expression levels of the eosinophil-specific chemokines in alveolar macrophages isolated from the lungs of mice with eosinophilic inflammation-induced PH. In these experiments, the levels of CCL11 and CCL24 were higher in macrophages isolated from APN-deficient mice than in macrophages from wild-type mice. Finally, we demonstrate that the extracts of eosinophil granules promoted the proliferation of pulmonary arterial smooth muscle cells in vitro. These data suggest that APN deficiency may exacerbate PH, in part, by increasing eosinophil recruitment into the lung and that eosinophils could play an important role in the pathogenesis of inflammation-induced PH. These results may have implications for the pathogenesis and treatment of PH caused by vascular inflammation.  相似文献   

14.
Scanning electron microscopy was used to study the endothelial surface of the pulmonary trunk, artery, and vein in normobaric control rats as well as in rats exposed to hypobaric hypoxia for 7 and 21 days. The individual endothelial cells of the normobaric pulmonary trunk and hilar artery were flat and slightly elongated with elevated nuclear regions, and those of the intermediate-sized artery were more elongated and had more microvilli than the large arteries studied. Their endothelial cell boundaries were outlined by beaded cytoplasmic projections. The surfaces of the normobaric hilar and intermediate-sized veins were smooth and demonstrated numerous longitudinal streaks. These venous endothelial cells were elongated and their cell boundaries were outlined by low discontinuous marginal folds. Exposure to hypobaric hypoxia caused the following changes on the arterial surface: elevation of the endothelial cells; formation of microvilli-rich cell clusters; formation of hollow defects; and the attachment of leukocytes. Hypobaric hypoxia also caused the disappearance of the longitudinal streaks and the occurrence of microvilli-rich cells in the hilar veins. The endothelial surface modifications in the hypobaric rats could be related to thickening of the endothelium, intimal edema, increased intimal connective tissue, luminal invasion of leukocytes, and increased endothelial cell proliferation, known to occur in systemic arteries of hypertensive animals.  相似文献   

15.
Experimental pulmonary hypertension induced in a hypobaric hypoxic environment (HHE) is characterized by structural remodeling of the heart and pulmonary arteries. Adrenomedullin (AM) has diuretic, natriuretic, and hypotensive effects. To study the possible effects of HHE on the AM synthesis system, 150 male Wistar rats were housed in a chamber at the equivalent of a 5,500-m altitude level for 21 days. After 14 days of exposure to HHE, pulmonary arterial pressure (PAP) was significantly increased (compared with control rats). The plasma AM protein level was significantly increased on day 21 of exposure to HHE. In the right ventricle (RV), right atrium, and left atrium of the heart, the expressions of AM mRNA and protein were increased in the middle to late phase (5-21 days) of HHE, whereas in the brain and lung they were increased much earlier (0.5-5 days). In situ hybridization and immunohistochemistry showed AM mRNA and protein staining to be more intense in the RV in animals in the middle to late phase of HHE exposure than in the controls. During HHE, these changes in AM synthesis, which occurred strongly in the RV, occurred alongside the increase in PAP. Conceivably, AM may play a role in modulating pulmonary hypertension in HHE.  相似文献   

16.
Inhibition of voltage-gated, L-type Ca(2+) (Ca(L)) channels by clinical calcium channel blockers provides symptomatic improvement to some pediatric patients with pulmonary arterial hypertension (PAH). The present study investigated whether abnormalities of vascular Ca(L) channels contribute to the pathogenesis of neonatal PAH using a newborn piglet model of hypoxia-induced PAH. Neonatal piglets exposed to chronic hypoxia (CH) developed PAH by 21 days, which was evident as a 2.1-fold increase in pulmonary vascular resistance in vivo compared with piglets raised in normoxia (N). Transpulmonary pressures (DeltaPtp) in the corresponding isolated perfused lungs were 20.5 +/- 2.1 mmHg (CH) and 11.6 +/- 0.8 mmHg (N). Nifedipine reduced the elevated DeltaPtp in isolated lungs of CH piglets by 6.4 +/- 1.3 mmHg but only reduced DeltaPtp in lungs of N piglets by 1.9 +/- 0.2 mmHg. Small pulmonary arteries from CH piglets also demonstrated accentuated Ca(2+)-dependent contraction, and Ca(2+) channel current was 3.94-fold higher in the resident vascular muscle cells. Finally, although the level of mRNA encoding the pore-forming alpha(1C)-subunit of the Ca(L) channel was similar between small pulmonary arteries from N and CH piglets, a profound and persistent upregulation of the vascular alpha(1C) protein was detected by 10 days in CH piglets at a time when pulmonary vascular resistance was only mildly elevated. Thus chronic hypoxia in the neonate is associated with the anomalous upregulation of Ca(L) channels in small pulmonary arteries in vivo and the resulting abnormal Ca(2+)-dependent resistance may contribute to the pathogenesis of PAH.  相似文献   

17.

Background  

The importance of nitric oxide (NO) in hypoxic pulmonary hypertension has been demonstrated using nitric oxide synthase (NOS) knockout mice. In that model NO from endothelial NOS (eNOS) plays a central role in modulating pulmonary vascular tone and attenuating hypoxic pulmonary hypertension. However, the normal regulation of NOS expression in mice following hypoxia is uncertain. Because genetically engineered mice are often utilized in studies of NO, we conducted the present study to determine how hypoxia alters NOS expression in wild-type mice.  相似文献   

18.
Proximal pulmonary artery (PA) stiffening is a strong predictor of mortality in pulmonary hypertension. Collagen accumulation is mainly responsible for PA stiffening in hypoxia-induced pulmonary hypertension (HPH) in mouse models. We hypothesized that collagen cross-linking and the type I isoform are the main determinants of large PA mechanical changes during HPH, which we tested by exposing mice that resist type I collagen degradation (Col1a1 $^\mathrm{R/R})$ and littermate controls (Col1a1 $^{+/+})$ to hypoxia for 10 days with or without $\beta $ -aminopropionitrile (BAPN) treatment to prevent cross-link formation. Static and dynamic mechanical tests were performed on isolated PAs with smooth muscle cells (SMC) in passive and active states. Percentages of type I and III collagen were quantified by histology; total collagen content and cross-linking were measured biochemically. In the SMC passive state, for both genotypes, hypoxia tended to increase PA stiffness and damping capacity, and BAPN treatment limited these increases. These changes were correlated with collagen cross-linking ( $p<0.05$ ). In the SMC active state, hypoxia increased PA dynamic stiffness and BAPN had no effect in Col1a1 $^{+/+}$ mice ( $p<0.05$ ). PA stiffness did not change in Col1a1 $^\mathrm{R/R}$ mice. Similarly, damping capacity did not change for either genotype. Type I collagen accumulated more in Col1a1 $^{+/+}$ mice, whereas type III collagen increased more in Col1a1 $^\mathrm{R/R}$ mice during HPH. In summary, PA passive mechanical properties (both static and dynamic) are related to collagen cross-linking. Type I collagen turnover is critical to large PA remodeling during HPH when collagen metabolism is not mutated and type III collagen may serve as a reserve.  相似文献   

19.

Background

Chronic hypoxia induces pulmonary arterial hypertension (PAH). Smooth muscle cell (SMC) proliferation and hypertrophy are important contributors to the remodeling that occurs in chronic hypoxic pulmonary vasculature. We hypothesized that rapamycin (RAPA), a potent cell cycle inhibitor, prevents pulmonary hypertension in chronic hypoxic mice.

Methods

Mice were held either at normoxia (N; 21% O2) or at hypobaric hypoxia (H; 0.5 atm; ~10% O2). RAPA-treated animals (3 mg/kg*d, i.p.) were compared to animals injected with vehicle alone. Proliferative activity within the pulmonary arteries was quantified by staining for Ki67 (positive nuclei/vessel) and media area was quantified by computer-aided planimetry after immune-labeling for α-smooth muscle actin (pixel/vessel). The ratio of right ventricle to left ventricle plus septum (RV/[LV+S]) was used to determine right ventricular hypertrophy.

Results

Proliferative activity increased by 34% at day 4 in mice held under H (median: 0.38) compared to N (median: 0.28, p = 0.028) which was completely blocked by RAPA (median HO+RAPA: 0.23, p = 0.003). H-induced proliferation had leveled off within 3 weeks. At this time point media area had, however, increased by 53% from 91 (N) to 139 (H, p < 0.001) which was prevented by RAPA (H+RAPA: 102; p < 0.001). RV/[LV+S] ratio which had risen from 0.17 (N) to 0.26 (H, p < 0.001) was attenuated in the H+RAPA group (0.22, p = 0.041). For a therapeutic approach animals were exposed to H for 21 days followed by 21 days in H ± RAPA. Forty two days of H resulted in a media area of 129 (N: 83) which was significantly attenuated in RAPA-treated mice (H+RAPA: 92). RV/[LV+S] ratios supported prevention of PH (N 0.13; H 0.27; H+RAPA 0.17). RAPA treatment of N mice did not influence any parameter examined.

Conclusion

Therapy with rapamycin may represent a new strategy for the treatment of pulmonary hypertension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号