首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirota H  Chen J  Betz UA  Rajewsky K  Gu Y  Ross J  Müller W  Chien KR 《Cell》1999,97(2):189-198
Biomechanical stress is a major stimulus for cardiac hypertrophy and the transition to heart failure. By generating mice that harbor a ventricular restricted knockout of the gp130 cytokine receptor via Cre-IoxP-mediated recombination, we demonstrate a critical role for a gp130-dependent myocyte survival pathway in the transition to heart failure. Such conditional mutant mice have normal cardiac structure and function, but during aortic pressure overload, these mice display rapid onset of dilated cardiomyopathy and massive induction of myocyte apoptosis versus the control mice that exhibit compensatory hypertrophy. Thus, cardiac myocyte apoptosis is a critical point in the transition between compensatory cardiac hypertrophy and heart failure. gp130-dependent cytokines may represent a novel therapeutic strategy for preventing in vivo heart failure.  相似文献   

2.
Inhibitory Galpha(i) protein increases in the myocardium during hypertrophy and has been associated with beta-adrenergic receptor (beta-AR) desensitization, contractile dysfunction, and progression of cardiac disease. The role of Galpha(i) proteins in mediating basal cardiac function and beta-AR response in nonpathological myocardium, however, is uncertain. Transgenic mice with targeted inactivation of Galpha(i2) or Galpha(i3) were examined for in vivo cardiac function with the use of conscious echocardiography and for ex vivo cardiac response to inotropic stimulation with the use of Langendorff blood-perfused isolated hearts and adult ventricular cardiomyocytes. Echocardiography revealed that percent fractional shortening and heart rate were similar among wild-type, Galpha(i2)-null, and Galpha(i3)-null mice. Comparable baseline diastolic and contractile performance was also observed in isolated hearts and isolated ventricular myocytes from wild-type mice and mice lacking Galpha(i) proteins. Isoproterenol infusion enhanced diastolic and contractile performance to a similar degree in wild-type, Galpha(i2)-null, and Galpha(i3)-null mice. These data demonstrate no observable role for inhibitory G proteins in mediating basal cardiac function or sensitivity to beta-AR stimulation in nonpathological myocardium.  相似文献   

3.
《Autophagy》2013,9(7):1034-1036
To examine the functional significance and detailed morphological characteristics of starvation-induced autophagy in the adult heart, we starved green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) transgenic mice for up to 3 days. Electron microscopy revealed that, after as little as 12 hours of starvation, round and homogenously electron-dense lipid droplet-like vacuoles appeared in cardiomyocytes. These were determined to be lysosomes based on cathepsin D immunopositivity and acid phosphatase activity. The numbers of these lysosomes increased with starvation time, and typical autolysosomes with intracellular organelles destined for degradation appeared and increased in number at later times during the starvation period. Myocardial expression of the autophagy-related proteins LC3-II, cathepsin D, and ubiquitin increased, while myocardial ATP content decreased, as the starvation interval proceeded. Treatment with bafilomycin A1, an autophagy inhibitor, did not affect cardiac function in normally fed mice, but it significantly depressed cardiac function and caused significant left ventricular dilatation in the mice starved for 3 days. Cardiomyocytes from starved mice treated with bafilomycin A1 showed marked accumulation of lysosomes, and the myocardial amino acid content, which increased during starvation in normally fed mice, as well as the myocardial ATP content, were severely reduced, which likely contributed to the cardiac dysfunction. The present findings suggest autophagy plays a critical role in the maintenance of cardiac function during starvation in the adult.  相似文献   

4.
Multiple factors lead to the development and maintenance of chronic heart failure. Blockade of ErbB-2 or ErbB-4 tyrosine kinase receptor signaling leads to dilated cardiomyopathy. ErbB-1 may protect the heart against stress-induced injury and its ligand; epidermal growth factor (EGF) increases myocardial contractility, whereas heparin-binding EGF is essential for normal cardiac function. However, the role of ErbB-1 in control of cardiac function is not clear. We hypothesized that ErbB-1 is essential for maintaining adult cardiac function. Using the ecdysone-inducible gene expression system, we expressed humanized cardiomyocyte-specific dominant-negative ErbB-1 mutant receptors (hErbB-1-mut) in young adult mice that block endogenous cardiac ErbB-1 signaling. Molecular, morphological, and physiological tests (under anesthesia) were performed. As a result, hErbB-1-mut was expressed selectively in cardiomyocytes leading to the blockade of endogenous ErbB-1 phosphorylation and ErbB-2 transphosphorylation. An increase in left ventricular mass, atrial natriuretic factor expression, and histological changes were indicative of cardiac hypertrophy. Cardiac dilation, numerous cardiac lesions, and the loss of the clear boundary between cardiac fibrils were noted histologically. Early and long-term hErbB-1-mut induction led to a significant decrease in fractional shortening and to significant increases in left ventricular end-systolic diameter and volume. The treatment of adenylyl cyclase activator (forskolin analog) normalized the depressed cardiac function. Resting cardiac function returned to normal after reversing mutant expression. A 4-day survival rate of transverse-aortic constricted hErbB-1-mut mice was only 20% compared with 100% in controls. In conclusion, these observations indicate that the blockade of cardiac ErbB-1 signaling leads to the blockade of ErbB-2 signaling and that together they result in cardiac dysfunction.  相似文献   

5.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

6.
Abnormalities in cardiac gap junction expression have been postulated to contribute to arrhythmias and ventricular dysfunction. We investigated the role of cardiac gap junctions by generating a heart-specific conditional knock-out (CKO) of connexin43 (Cx43), the major cardiac gap junction protein. While the Cx43 CKO mice have normal heart structure and contractile function, they die suddenly from spontaneous ventricular arrhythmias. Because abnormalities in gap junction expression in the diseased heart can be focal, we also generated chimeric mice formed from Cx43-null embryonic stem (ES) cells and wildtype recipient blastocysts. Heterogeneous Cx43 expression in the chimeric mice resulted in conduction defects and depressed contractile function. These novel genetic murine models of Cx43 loss of function in the adult mouse heart define gap junctional abnormalities as a key molecular feature of the arrhythmogenic substrate and an important factor in heart dysfunction.  相似文献   

7.
Emerging clinical data support the notion that RV dysfunction is critical to the pathogenesis of cardiovascular disease and heart failure1-3. Moreover, the RV is significantly affected in pulmonary diseases such as pulmonary artery hypertension (PAH). In addition, the RV is remarkably sensitive to cardiac pathologies, including left ventricular (LV) dysfunction, valvular disease or RV infarction4. To understand the role of RV in the pathogenesis of cardiac diseases, a reliable and noninvasive method to access the RV structurally and functionally is essential.A noninvasive trans-thoracic echocardiography (TTE) based methodology was established and validated for monitoring dynamic changes in RV structure and function in adult mice. To impose RV stress, we employed a surgical model of pulmonary artery constriction (PAC) and measured the RV response over a 7-day period using a high-frequency ultrasound microimaging system. Sham operated mice were used as controls. Images were acquired in lightly anesthetized mice at baseline (before surgery), day 0 (immediately post-surgery), day 3, and day 7 (post-surgery). Data was analyzed offline using software.Several acoustic windows (B, M, and Color Doppler modes), which can be consistently obtained in mice, allowed for reliable and reproducible measurement of RV structure (including RV wall thickness, end-diastolic and end-systolic dimensions), and function (fractional area change, fractional shortening, PA peak velocity, and peak pressure gradient) in normal mice and following PAC.Using this method, the pressure-gradient resulting from PAC was accurately measured in real-time using Color Doppler mode and was comparable to direct pressure measurements performed with a Millar high-fidelity microtip catheter. Taken together, these data demonstrate that RV measurements obtained from various complimentary views using echocardiography are reliable, reproducible and can provide insights regarding RV structure and function. This method will enable a better understanding of the role of RV cardiac dysfunction.  相似文献   

8.
目的通过对不同年龄多巴胺D5^F173L突变基因及D5正常基因转基因小鼠的血压和心脏结构与功能进行分析,了解多巴胺D5受体在高血压发生发展过程中的作用。方法利用无创血压测量仪和高分辨率小动物超声系统检测两种转基因小鼠的血压和左心室壁厚度、左心室内径、左心室容积、射血分数、短轴缩短率和左心室质量等心脏功能指标。结果 D5^F173L转基因小鼠4月龄、6月龄、16月龄时收缩压、舒张压都明显高于D5转基因小鼠;4月龄、6月龄的D5F173L转基因小鼠与D5转基因小鼠相比舒张期和收缩期左室壁厚度均明显增大、左室内容积均明显变小、左心室重量增加;16月龄的D5^F173L转基因小鼠与D5转基因小鼠相比左心室前壁增厚、心腔内径缩短,心腔容积下降、心室重量增加、射血分数提高、短轴缩短率提高;在18月龄时D5^F173L转基因小鼠相比于D5转基因小鼠左心室收缩期前壁厚度增加,后壁厚度减少,舒张期前壁厚度增加,后壁厚度减少;另外在18月龄时D5^F173L转基因小鼠与其16月龄时相比,射血分数、短轴缩短率明显降低,收缩期左心室容积明显增大。结论 D5^F173L转基因小鼠的血压及心脏功能与结构的分析结果符合原发性高血压的特征。D5^F173L转基因小鼠可作为原发性高血压动物模型。  相似文献   

9.
Cardiovascular transgenic mouse models with an early phenotype or even premature death require noninvasive imaging methods that allow for accurate visualization of cardiac morphology and function. Thus the purpose of our study was to assess the feasibility of magnetic resonance imaging (MRI) to characterize cardiac function and mass in newborn, juvenile, and adult mice. Forty-five C57bl/6 mice from seven age groups (3 days to 4 mo after birth) were studied by MRI under isoflurane anesthesia. Electrocardiogram-gated cine MRI was performed with an in-plane resolution of (78-117 microm)(2). Temporal resolution per cine frame was 8.6 ms. MRI revealed cardiac anatomy in mice from all age groups with high temporal and spatial resolution. There was close correlation between MRI- and autopsy-determined left ventricular (LV) mass (r = 0.95, SE of estimate = 9.5 mg). The increase of LV mass (range 9.6-101.3 mg), cardiac output (range 1.1-14.3 ml/min), and stroke volume (range 3. 2-40.2 microl) with age could be quantified by MRI measurements. Ejection fraction and cardiac index did not change with aging. However, LV mass index decreased with increasing age (P < 0.01). High-resolution MRI allows for accurate in vivo assessment of cardiac function in neonatal, juvenile, and adult mice. This method should be useful when applied in transgenic mouse models.  相似文献   

10.
Csx/Nkx2-5, which is essential for cardiac development of the embryo, is abundantly expressed in the adult heart. We here examined the role of Csx/Nkx2-5 in the adult heart using two kinds of transgenic mice. Transgenic mice that overexpress a dominant negative mutant of Csx/Nkx2-5 (DN-TG mice) showed degeneration of cardiac myocytes and impairment of cardiac function. Doxorubicin induced more marked cardiac dysfunction in DN-TG mice and less in transgenic mice that overexpress wild type Csx/Nkx2-5 (WT-TG mice) compared with non-transgenic mice. Doxorubicin induced cardiomyocyte apoptosis, and the number of apoptotic cardiomyocytes was high in the order of DN-TG mice, non-transgenic mice, and WT-TG mice. Overexpression of the dominant negative mutant of Csx/Nkx2-5 induced apoptosis in cultured cardiomyocytes, while expression of wild type Csx/Nkx2-5 protected cardiomyocytes from doxorubicin-induced apoptotic death. These results suggest that Csx/Nkx2-5 plays a critical role in maintaining highly differentiated cardiac phenotype and in protecting the heart from stresses including doxorubicin.  相似文献   

11.
12.
13.
14.
Evidence indicates that disruption of normal prenatal development influences an individual''s risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2–4 cups of coffee in humans. After dams gave birth, offspring were examined at 8–10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.  相似文献   

15.
16.
The side effects of cancer therapy on normal tissues limit the success of therapy. Generation of reactive oxygen species (ROS) has been implicated for numerous chemotherapeutic agents including doxorubicin (DOX), a potent cancer chemotherapeutic drug. The production of ROS by DOX has been linked to DNA damage, nuclear translocation of p53, and mitochondrial injury; however, the causal relationship and molecular mechanisms underlying these events are unknown. The present study used wild-type (WT) and p53 homozygous knock-out (p53(-/-)) mice to investigate the role of p53 in the crosstalk between mitochondria and nucleus. Injecting mice with DOX (20 mg/kg) causes oxidative stress in cardiac tissue as demonstrated by immunogold analysis of the levels of 4-hydroxy-2'-nonenal (4HNE)-adducted protein, a lipid peroxidation product bound to proteins. 4HNE levels increased in both nuclei and mitochondria of WT DOX-treated mice but only in nuclei of DOX-treated p53((-/-)) mice, implicating a critical role for p53 in causing DOX-induced oxidative stress in mitochondria. The stress-activated protein c-Jun amino-terminal kinase (JNKs) was activated in response to increased 4HNE in WT mice but not p53((-/-)) mice receiving DOX treatment, as determined by co-immunoprecipitation of HNE and pJNK. The activation of JNK in DOX treated WT mice was accompanied by Bcl-2 dissociation from Beclin in mitochondria and induction of type II cell death (autophagic cell death), as evidenced by an increase in LC3-I/LC-3-II ratio and γ-H2AX, a biomarker for DNA damage. The absence of p53 significantly reduces mitochondrial injury, assessed by quantitative morphology, and decline in cardiac function, assessed by left ventricular ejection fraction and fraction shortening. These results demonstrate that p53 plays a critical role in DOX-induced cardiac toxicity, in part, by the induction of oxidative stress mediated retrograde signaling.  相似文献   

17.
Autophagy, an evolutionarily conserved process for the bulk degradation of cytoplasmic components, serves as a cell survival mechanism in starving cells. Although altered autophagy has been observed in various heart diseases, including cardiac hypertrophy and heart failure, it remains unclear whether autophagy plays a beneficial or detrimental role in the heart. Here, we report that the cardiac-specific loss of autophagy causes cardiomyopathy in mice. In adult mice, temporally controlled cardiac-specific deficiency of Atg5 (autophagy-related 5), a protein required for autophagy, led to cardiac hypertrophy, left ventricular dilatation and contractile dysfunction, accompanied by increased levels of ubiquitination. Furthermore, Atg5-deficient hearts showed disorganized sarcomere structure and mitochondrial misalignment and aggregation. On the other hand, cardiac-specific deficiency of Atg5 early in cardiogenesis showed no such cardiac phenotypes under baseline conditions, but developed cardiac dysfunction and left ventricular dilatation one week after treatment with pressure overload. These results indicate that constitutive autophagy in the heart under baseline conditions is a homeostatic mechanism for maintaining cardiomyocyte size and global cardiac structure and function, and that upregulation of autophagy in failing hearts is an adaptive response for protecting cells from hemodynamic stress.  相似文献   

18.
Anion exchanger 1 (AE1; SLC4A1), the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes, is also expressed in heart. The aim of this study was to assess the role of AE1 in heart function through study of AE1-null (AE1(-/-)) mice, which manifest severe hemolytic anemia resulting from erythrocyte fragility. Heart weight-to-body weight ratios were significantly higher in the AE1(-/-) mice than in wild-type (AE1(+/+)) littermates at both 1-3 days postnatal (3.01 +/- 0.38 vs. 1.45 +/- 0.04) and at 7 days postnatal (9.45 +/- 0.53 vs. 4.13 +/- 0.41), indicating that loss of AE1 led to cardiac hypertrophy. Heterozygous (AE1(+/-)) mice had no signs of cardiac hypertrophy. Morphology of the adult AE1(-/-) mutant heart revealed an increased left ventricular mass, accompanied by increased collagen deposition and fibrosis. M-mode echocardiography revealed dysfunction of the AE1(-/-) hearts, including dilated left ventricle end diastole and systole and expanded left ventricular mass compared with AE1(+/+) hearts. Expression of intracellular pH-regulatory mechanisms in the hypertrophic myocardium of neonate AE1(-/-) mutant mice was indistinguishable from AE1(+/-) and AE1(+/+) mice, as assessed by quantitative real-time RT-PCR. Confocal immunofluorescence revealed that, in normal mouse myocardium, AE1 is sarcolemmal, whereas AE3 and slc26a6 are found both at the sarcolemma and in internal membranes (T tubules and sarcoplasmic reticulum). These results indicate that AE1(-/-) mice, which suffer from severe hemolytic anemia and spherocytosis, display cardiac hypertrophy and impaired cardiac function, reminiscent of findings in patients with hereditary abnormalities of red blood cells. No essential role for AE1 in heart function was found.  相似文献   

19.
Gap junction channels in ventricular myocardium are required for electrical and metabolic coupling between cardiac myocytes and for normal cardiac pump function. Although much is known about expression patterns and remodeling of cardiac connexin(Cx)43, little is known about the less abundant Cx45, which is required for embryonic development and viability, is downregulated in adult hearts, and is pathophysiologically upregulated in human end-stage heart failure. We applied quantitative immunoblotting and immunoprecipitation to native myocardial extracts, immunogold electron microscopy to cardiac tissue and membrane sections, electrophysiological recordings to whole hearts, and high-resolution tandem mass spectrometry to Cx45 fusion protein, and developed two new tools, anti-Cx45 antisera and Cre+;Cx45 floxed mice, to facilitate characterization of Cx45 in adult mammalian hearts. We found that Cx45 represents 0.3% of total Cx protein (predominantly 200 fmol Cx43 protein/μg ventricular protein) and colocalizes with Cx43 in native ventricular gap junctions, particularly in the apex and septum. Cre+;Cx45 floxed mice express 85% less Cx45, but do not exhibit overt electrophysiologic abnormalities. Although the basal phosphorylation status of native Cx45 remains unknown, CaMKII phosphorylates 8 Ser/Thr residues in Cx45 in vitro. Thus, although downregulation of Cx45 does not produce notable deficits in electrical conduction in adult, disease-free hearts, Cx45 is a target of the multifunctional kinase CaMKII, and the phosphorylation status of Cx45 and the role of Cx43/Cx45 heteromeric gap junction channels in both normal and diseased hearts merits further investigation.  相似文献   

20.
Steroid hormones control the expression of many cellular regulators, and a role for estrogen in cardiovascular function and disease has been well documented. To address whether the activity of the L-type Ca2+ channel, a critical element in cardiac excitability and contractility, is altered by estrogen and its nuclear receptor, we examined cardiac myocytes from male mice in which the estrogen receptor gene had been disrupted (ERKO mice). Binding of dihydropyridine Ca2+ channel antagonist isradipine (PN200-110) was increased 45.6% in cardiac membranes from the ERKO mice compared to controls, suggesting that a lack of estrogen receptors in the heart increased the number of Ca2+ channels. Whole-cell patch clamp of acutely dissociated adult cardiac ventricular myocytes indicated that Ca2+ channel current was increased by 49% and action potential duration was increased by 75%. Examination of electrocardiogram parameters in ERKO mice showed a 70% increase in the QT interval without significant changes in PQ or QRS intervals. These results show that the membrane density of the cardiac L-type Ca2+ channel is regulated by the estrogen receptor and suggest that decreased estrogen may lead to an increase in the number of cardiac L-type Ca2+ channels, abnormalities in cardiac excitability, and increased risk of arrhythmia and cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号