首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
CD1 proteins mediate the presentation of endogenous and foreign lipids on the cell surface for recognition by T cell receptors. To sample a diverse antigen pool, CD1 proteins are repeatedly internalized and recycled, assisted, in some cases, by lipid transfer proteins such as saposins. The specificity of each CD1 isoform is, therefore, conferred in part by its intracellular pathway but also by distinct structural features of the antigen-binding domain. Crystal structures of CD1-lipid complexes reveal hydrophobic grooves and pockets within these binding domains that appear to be specialized for different lipids. However, the mechanism of lipid loading and release remains to be characterized. Here we gain insights into this mechanism through a meta-analysis of the five human CD1 isoforms, in the lipid-bound and lipid-free states, using all-atom molecular dynamics simulations. Strikingly, for isoforms CD1b through CD1e, our simulations show the near-complete collapse of the hydrophobic cavities in the absence of the antigen. This event results from the spontaneous closure of the binding domain entrance, flanked by two α-helices. Accordingly, we show that the anatomy of the binding cavities is restored if these α-helices are repositioned extrinsically, suggesting that helper proteins encountered during recycling facilitate lipid exchange allosterically. By contrast, we show that the binding cavity of CD1a is largely preserved in the unliganded state because of persistent electrostatic interactions that keep the portal α-helices at a constant separation. The robustness of this binding groove is consistent with the observation that lipid exchange in CD1a is not dependent on cellular internalization.  相似文献   

3.
CD1 proteins are unique in their ability to present lipid Ags to T cells. Human CD1b shares significant amino acid homology with mouse CD1d1, which contains an unusual putative Ag-binding groove formed by two large hydrophobic pockets, A' and F'. We investigated the function of the amino acid residues that line the A' and F' pockets of CD1b by engineering 36 alanine-substitution mutants and analyzing their ability to present mycobacterial glycolipid Ags. Two lipid Ags presented by CD1b were studied, a naturally occurring glucose monomycolate (GMM) isolated from mycobacteria, which contains two long alkyl chains (C54-C62 and C22-C24) and synthetic GMM (sGMM), which includes two short alkyl chains (C18 and C14). We identified eight residues in both the A' and F' pockets that were involved in the presentation of both GMM and sGMM to T cells. Interestingly, four additional residues located in the distal portion of the A' pocket were required for the optimal presentation of GMM, but not sGMM. Conversely, nine residues located between the center of the groove and the F' pocket were necessary for the optimal presentation of sGMM, but not GMM. These data indicate that both the A' and F' pockets of human CD1b are required for the presentation of lipid Ags to T cells.  相似文献   

4.
CD1 proteins present lipid antigens to T cells. The antigens are acquired in the endosomal compartments. This raises the question of how the large hydrophobic CD1 pockets are preserved between the moment of biosynthesis in the endoplasmic reticulum and arrival to the endosomes. To address this issue, the natural ligands associated with a soluble form of human CD1b have been investigated. Using isoelectric focusing, native mass spectrometry and resolving the crystal structure at 1.8 A resolution, we found that human CD1b is simultaneously associated with endogenous phosphatidylcholine (PC) and a 41-44 carbon atoms-long spacer molecule. The two lipids appear to work in concert to stabilize the CD1b groove, their combined size slightly exceeding the maximal groove capacity. We propose that the spacer serves to prevent binding of ligands with long lipid tails, whereas short-chain lipids might still displace the PC, which is exposed at the groove entrance. The data presented herein explain how the CD1b groove is preserved, and provide a rationale for the in vivo antigen-binding properties of CD1b.  相似文献   

5.
CD1 proteins constitute a third class of antigen-presenting molecules. They are cell surface glycoproteins, expressed as approximately 50-kDa glycosylated heavy chains that are noncovalently associated with beta2-microglobulin. They bind lipids rather than peptides. Although their structure confirms the similarity of CD1 proteins to MHC class I and class II antigen presenting molecules, the mCD1d groove is relatively narrow, deep, and highly hydrophobic and it has two binding pockets instead of the several shallow pockets described for the classical MHC-encoded antigen-presenting molecules. Based upon their amino acid sequences, such a hydrobphobic groove provides an ideal environment for the binding of lipid antigens. The Natural Killer T (NKT) cells use their TCR to recognize glycolipids bound to or presented by CD1d. T cells reactive to lipids presented by CD1 have been involved in the protection against autoimmune and infectious diseases and in tumor rejection. Thus, the ability to identify, purify , and track the response of CD1-reactive NKT cell is of great importance . The generation of tetramers of alpha Galactosyl ceramide (a-Galcer) with CD1d has significant insight into the biology of NKT cells. Tetramers constructed from other CD1 molecules have also been generated and these new reagents have greatly expanded the knowledge of the functions of lipid-reactive T cells, with potential use in monitoring the response to lipid-based vaccines and in the diagnosis of autoimmune diseases and other treatments.  相似文献   

6.
T cells recognize ligands of different chemical structures. Recently, it has become clear that also self glycosphingolipids and bacterial lipoglycans may act as T cell stimulatory ligands. This type of antigen recognition is restricted by the non-polymorphic CD1 molecules, which have a structure resembling that of classical MHC molecules. Glycolipids insert their hydrophobic lipid tails in two pockets below the antigen-binding groove and position their hydrophilic heads on the external part of CD1 molecules. TCR interacts with these carbohydrates and discriminates their structural variations. Glycolipid-specific T cells may provide protection during bacterial and parasite infection probably with different mechanisms: by secreting pro-inflammatory lymphokines, by the direct killing of infected target cells, and by helping specific B cells in Ig production. Lipoglycans represent excellent candidates for new anti-microbial vaccines due to their wide distribution in the microbial world and their structural composition which does not change and thus cannot give rise to escape mutants. Moreover, these vaccines might induce anti-microbial protective T cell responses in the whole population due to the non-polymorphic nature of CD1 presenting molecules.  相似文献   

7.
CD1 proteins are a third family of antigen presenting molecules that bind bacterial and autologous lipid antigens for presentation to T cells. With the solution of the crystal structures of several complexes of CD1 molecules with lipids, a greater appreciation has been gained of the adaptability of CD1 in binding lipid antigens with diverse structural features. Biochemical studies of the interactions between the TCR and CD1-lipid complexes have revealed striking contrasts with TCR that bind to peptides presented by MHC-encoded class I and class II molecules. The sphingolipid activating proteins (SAP) have recently been found to facilitate the transfer of lipid antigens onto CD1 molecules. This helps to provide an explanation as to how the thermodynamic barrier, caused by loading hydrophobic lipid antigens in a hydrophilic environment, can be overcome. Mechanisms of CD1 endosomal trafficking are being delineated, including the means by which adaptor proteins induce the localization of some types of CD1 molecules to lysosomes, where they bind antigens. Unlike MHC class I and class II proteins, specialized molecules that function solely in chaperoning CD1 molecules, or in facilitating their antigen loading, have not been found. This suggests that the CD1 antigen presenting system, which diverged early in vertebrate evolution from MHC antigen presenting molecules, is a simpler system with a character closer to the primordial antigen presenting function.  相似文献   

8.
An emerging area of investigation is the role of lipids as immunological antigens. CD1 glycoproteins comprise a family of molecules that are specialized for presenting lipids, glycolipids and lipopeptides to T lymphocytes. Variations in the cytoplasmic tail sequences of CD1 isoforms lead to differential association with adaptor proteins and consequently divergent routes of intracellular trafficking, resulting in surveillance of distinct cellular sites for binding lipid antigens. CD1 molecules efficiently gain access to lipids from intracellular microbial pathogens in endosomal compartments, and the trafficking and lipid-binding specialization of CD1 isoforms may correlate with the endosomal segregation of structurally distinct lipids. Endosomal trafficking is also critical for CD1d molecules to load antigenic self-lipids that are presented to autoreactive CD1d-restricted natural killer (NK)T cells and is required for the positive selection of these unique T cells. Recent studies reveal a key role for accessory proteins that facilitate the uptake of lipid antigens by CD1 molecules. These include lysosomal lipid-transfer proteins, such as the saposins, and apolipoprotein E, the major serum factor that binds and delivers extracellular lipids to antigen-presenting cells. These advances in understanding the CD1 lipid antigen presentation system raise new considerations about the role of the immune response in lipid-related diseases.  相似文献   

9.
Analysis of the data as to the mechanism of specific antibody transformation into polyreactive immunoglobulins (PRIG) shows that for this transformation it is necessary and sufficiently to deprive antibodies of lipids, which are in norm tightly bound to the antibodies. Removal of these lipids by any methods (by treatment of antibodies with chaotropic ions, low/high pH, reactive oxygen species and lipases) leads to the loose by antibodies of their specificity and acquiring the ability to react with various non-related antigens, i.e. to their conversion into PRIG. Mathematical modeling of the PRIG--antigen interaction and values of thermodynamic characteristics of this process shows that antigen-binding domains of PRIG are in semi-melted state, thanks to what they can fit their structure to be complementary to structurally different antigens. Thus, we conclude that lipids bound to the so-called "hydrophobic pockets" of immunoglobulins (Ig) can stabilize the conformation of Ig and increase their rigidity, and removal of these lipids induce flexibility of Ig domains, responsible for interaction with antigens. It was presumed that lipids could exert the similar function of conformation stabilization not only in the case of antibodies, but also combining with some other proteins, for example, enzymes. Their removal could lead to the changing of protein conformation and loosing its biological activity. In this case the function of lipid removing and protein inactivation could exert cellular reactive oxygen species and cellular lipases and lipoxygenases.  相似文献   

10.
Cellular CD1 proteins bind lipids that differ in length (C(12-80)), including antigens that exceed the capacity of the CD1 groove. This could be accomplished by trimming lipids to a uniform length before loading or by inserting each lipid so that it penetrates the groove to a varying extent. New assays to detect antigen fragments generated within human dendritic cells showed that bacterial antigens remained intact, even after delivery to lysosomes, where control lipids were cleaved. Further, recombinant CD1b proteins could bind and present C(80) lipid antigens using a mechanism that did not involve cellular enzymes or lipid cleavage, but was regulated by pH in the physiologic range. We conclude that endosomal acidification acts directly, rather than through enzymatic trimming, to insert lipids into CD1b. Lipids are loaded in an intact form, so that they likely protrude through a portal near the bottom of the groove, which represents an escape hatch for long lipids from mycobacterial pathogens.  相似文献   

11.
《Journal of molecular biology》2019,431(17):3339-3352
All membrane proteins have dynamic and intimate relationships with the lipids of the bilayer that may determine their activity. Mechanosensitive channels sense tension through their interaction with the lipids of the membrane. We have proposed a mechanism for the bacterial channel of small conductance, MscS, that envisages variable occupancy of pockets in the channel by lipid chains. Here, we analyze protein–lipid interactions for MscS by quenching of tryptophan fluorescence with brominated lipids. By this strategy, we define the limits of the bilayer for TM1, which is the most lipid exposed helix of this protein. In addition, we show that residues deep in the pockets, created by the oligomeric assembly, interact with lipid chains. On the cytoplasmic side, lipids penetrate as far as the pore-lining helices and lipid molecules can align along TM3b perpendicular to lipids in the bilayer. Cardiolipin, free fatty acids, and branched lipids can access the pockets where the latter have a distinct effect on function. Cholesterol is excluded from the pockets. We demonstrate that introduction of hydrophilic residues into TM3b severely impairs channel function and that even “conservative” hydrophobic substitutions can modulate the stability of the open pore. The data provide important insights into the interactions between phospholipids and MscS and are discussed in the light of recent developments in the study of Piezo1 and TrpV4.  相似文献   

12.
A theoretical scheme is proposed by which the type-specific cell surface receptors of T-lymphocytes, CD8 and CD4, bind class I and II MHC proteins in a similar manner. The scheme has equivalent residues in the C'/C' loop-C' strand-C'/D loop region in domain 1 of CD4 and CD8 alpha binding to equivalent residues in the C and D beta-strands and C/D loops in HLA-DR beta 2 (class II) and HLA-A2 alpha 3 (class I) respectively through a series of electrostatic, hydrogen and hydrophobic bonds.  相似文献   

13.
14.
T lymphocytes are characterized by the use of structurally diverse TCR. The discovery of subsets of canonical T cells that have structurally homogeneous TCR presents an enigma: What antigens do these T cells recognize, and how does their antigen specificity relate to their functions? One subset of canonical T cells is restricted by CD1d, a non-classical antigen presenting molecule that presents lipids and glycolipids. Canonical CD1d-restricted T cells have semi-invariant TCR consisting of an invariantly rearranged TCR alpha chain, paired with diversely rearranged TCR beta chains. Most respond strongly to the unusual glycolipid alpha-galactosylceramide (alpha-GalCer), and can also respond to cellular antigens presented by CD1d. Mounting evidence indicates that alpha-GalCer responsive T cells are heterogeneous in their reactivities to cellular antigens, suggesting that an individual semi-invariant TCR may be capable of recognizing more than one ligand. Recent crystal structures of CD1b molecules with three different bound lipids indicate that the antigenic features of lipids may be localized over a smaller area than those of peptides, and that the positioning of the polar head group can vary substantially. A model that explains how CD1d-restricted T cells could possess both conserved and heterogeneous antigen specificities, is that different lipid antigens may interact with distinct areas of a TCR due to differences in the positioning of the polar head group. Hence, canonical CD1d-restricted TCR could recognize conserved antigens via the invariant TCR alpha chain, and have diverse antigen specificities that are conferred by their individual TCR beta chains.  相似文献   

15.
Intracellular bacteria such as Mycobacterium tuberculosis primarily infect macrophages. Within these host cells, the pathogens are confined to phagosomes and their antigens are secluded from the classical MHC I presentation pathway. Moreover, macrophages fail to express certain antigen presenting molecules like CD1 proteins. As a result of this intracellular lifestyle, the pathways for the induction of MHC I- and CD1-restricted CD8 T cells by such microorganisms remain elusive. Based on recent findings in tuberculosis and salmonellosis, we propose a new detour pathway for CD8 T cell activation against intracellular bacteria through apoptotic blebs from infected macrophages. Pathogen-derived antigens including proteins and lipids are delivered from infected cells to non-infected dendritic cells. Subsequently, these professional antigen presenting cells display microbial antigens through MHC I and CD1 to T cells. Thus, cross-priming mediated by apoptotic vesicles is not just a matter of antigen distribution, but an intrinsic immunological function due to the nature of phagosomally located intracellular bacteria. We consider infection-induced apoptosis the conditio sine qua non for antigen-specific CD8 T cell activation by phagosome-enclosed pathogens. This important new function of cell death in antibacterial immunity requires consideration for rational vaccine design.  相似文献   

16.
Lipids are important antigens that induce T cell-mediated specific immune responses. They are presented to T lymphocytes by a specific class of MHC-I like proteins, termed CD1. The majority of the described CD1-presented mycobacterial antigens are presented by the CD1b isoform. We previously demonstrated that the stimulation of CD1b-restricted T cells by the hexamannosylated phosphatidyl-myo-inositol (PIM(6)), a family of mycobacterial antigens, requires a prior partial digestion of the antigen oligomannoside moiety by α-mannosidase and that CD1e is an accessory protein absolutely required for the generation of the lipid immunogenic form. Here, we show that CD1e behaves as a lipid transfer protein influencing lipid immunoediting and membrane transfer of PIM lipids. CD1e selectively assists the α-mannosidase-dependent digestion of PIM(6) species according to their degree of acylation. Moreover, CD1e transfers only diacylated PIM from donor to acceptor liposomes and also from membranes to CD1b. This study provides new insight into the molecular mechanisms by which CD1e contributes to lipid immunoediting and CD1-restricted presentation to T cells.  相似文献   

17.
The antigenic peptide, major histocompatibility complex molecule (MHC; also called human leukocyte antigen, HLA), coreceptor CD8, or CD4 and T‐cell receptor (TCR) function as a complex to initiate effectors’ mechanisms of the immune system. The tight functional and physical interaction among these molecules may have involved strong coevolution links among domains within and between proteins. Despite the importance of unraveling such dependencies to understand the arms race of host–pathogen interaction, no previous studies have aimed at achieving such an objective. Here, we perform an exhaustive coevolution analysis and show that indeed such dependencies are strongly shaping the evolution and probably the function of these molecules. We identify intramolecular coevolution in HLA class I and II at domains important for their immune activity. Most of the amino acid sites identified to be coevolving in HLAI have been also detected to undergo positive Darwinian selection highlighting therefore their adaptive value. We also identify coevolution among antigen‐binding pockets (P1‐P9) and among these and TCR‐binding sites. Conversely to HLAI, coevolution is weaker in HLAII. Our results support that such coevolutionary patterns are due to selective pressures of host–pathogen coevolution and cooperative binding of TCRs, antigenic peptides, and CD8/CD4 to HLAI and HLAII.  相似文献   

18.
Accurate prediction of location of cavities and surface grooves in proteins is important, as these are potential sites for ligand binding. Several currently available programs for cavity detection are unable to detect cavities near the surface or surface grooves. In the present study, an optimized molecular dynamics based procedure is described for detection and quantification of interior cavities as well as surface pockets. This is based on the observation that the mobility of water in such pockets is significantly lower than that of bulk water. The algorithm efficiently detects surface grooves that are sites of protein-ligand and protein-protein interaction. The algorithm was also used to substantially improve the performance of an automated docking procedure for docking monomers of nonobligate protein-protein complexes. In addition, it was applied to predict key residues involved in the binding of the E. coli toxin CcdB with its inhibitor. Predictions were subsequently validated by mutagenesis experiments.  相似文献   

19.
Epitope mapping studies and the determination of the structure to 1.8 A resolution have been carried out for the antigen-binding fragment MR1 in complex with peptide antigen. MR1 is specific for the novel fusion junction of the mutant epidermal growth factor receptor EGFRvIII and has been reported to have a high degree of specificity for the mutant EGFRvIII over the wild-type EGF receptor. The structure of the complex shows that the peptide antigen residue side-chains found by epitope mapping studies to be critical for recognition are accommodated in pockets on the surface of the Fv. However, the most distinctive portion of the peptide antigen, the novel fusion glycine residue, makes no contact to the Fv and does not contribute directly to the epitope. The specificity of MR1 lies in the ability of this glycine residue to assume the restricted conformation needed to form a type II' beta-hairpin turn more easily, and demonstrates that a peptide antigen can be used to generate a conformational epitope.  相似文献   

20.
CD1 molecules are a family of major histocompatibility complex (MHC)-related glycoproteins that present lipid and glycolipid antigens to T cells. Interestingly, it has been demonstrated that CD1d-restricted T cells have a pathogenic role in atherosclerosis. Recent studies suggest an association between the cellular machinery that loads CD1 molecules with glycolipids and several key proteins in lipid metabolism. These proteins include the sphingolipid activator proteins (SAPs), microsomal triglyceride transfer protein (MTP) and apolipoprotein E (apoE). MTP and SAPs seem to be crucial for loading CD1d with lipids in the endoplasmic reticulum and endosomal compartments, respectively, whereas apoE facilitates efficient uptake and delivery of exogenous lipid antigens to CD1d in endosomal compartments. These studies reveal new and unexpected relationships between lipid metabolism and antigen presentation by CD1 molecules. Targeting this pathway of immune activation might have therapeutic potential for the treatment of chronic inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号