首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An artificial fusion protein of Arthrobacter oxydans dextranase and Klebsiella pneumoniae α-amylase was constructed and expressed in Escherichia coli. Most of the expressed protein existed as an insoluble fraction, which was solubilized with urea. The purified fusion enzyme electrophoretically migrated as a single protein band; M = 137 kDa, and exhibited activities of both dextranase (10.8 U mg−1) and amylase (7.1 U mg−1), which were lower than that of reference dextranase (13.3 U mg−1) and α-amylase (103 U mg−1). The fusion enzyme displayed bifunctional enzyme activity at pH 5–7 at 37°C. These attributes potentially make the fusion enzyme more convenient for use in sugar processing than a two-enzyme system.  相似文献   

2.
Trehalose synthase (TSII) from Corynebacterium nitrilophilus NRC was successively purified by ammonium sulphate precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration chromatography on Sephadex G-100 columns. The specific activity of the trehalose synthase was increased ~200-fold, from 0.14 U mg−1 protein to 28.3 U mg−1 protein. TSII was found to be a monomeric protein with a molecular weight of 67–69 kDa. Characterization of the enzyme exhibited optimum pH and temperature were 7.5 and 35°C, respectively. The purified enzyme was stable from pH 6.6 to 7.8 and able to prolong its thermal stability up to 35°C. The enzyme activity was inhibited strongly by Zn2+, Hg2+ and Cu2+ and moderately by Ba2+, Fe2+, Pb2+ and Ni2+. Other metal ions Ca2+, Mg2+, Co2+, Mn2+ and EDTA had almost no effect.  相似文献   

3.
A Psychrotolerant alkaline protease producing bacterium IIIM-ST045 was isolated from a soil sample collected from the Thajiwas glacier of Kashmir, India and identified as Stenotrophomonas sp. on the basis of its biochemical properties and 16S ribosomal gene sequencing. The strain could grow well within a temperature range of 4–37°C however, showed optimum growth at 15°C. The strain was found to over-produce proteases when it was grown in media containing lactose as carbon source (157.50 U mg−1). The maximum specific enzyme activity (398 U mg−1) was obtained using soya oil as nitrogen source, however, the inorganic nitrogen sources urea, ammonium chloride and ammonium sulphate showed the lowest production of 38.9, 62.2 and 57.9 U mg−1. The enzyme was purified to 18.45 folds and the molecular weight of the partially purified protease was estimated to be ~55 kDa by SDS-PAGE analysis. The protease activity increased as the increase in enzyme concentration while as the optimum enzyme activity was found when casein (1% w/v) was used as substrate. The enzyme was highly active over a wide range of pH from 6.5 to 12.0 showing optimum activity at pH 10.0. The optimum temperature for the enzyme was 15°C. Proteolytic activity reduced gradually with higher temperatures with a decrease of 56% at 40°C. The purified enzyme was checked for the removal of protein containing tea stains using a silk cloth within a temperature range of 10–60°C. The best washing efficiency results obtained at low temperatures indicate that the enzyme may be used for cold washing purposes of delicate fabrics that otherwise are vulnerable to high temperatures.  相似文献   

4.
Lactobacillus helveticus, grown at 37°C in MRS medium supplemented with 3 mM cholesterol, assimilated all the cholesterol in 42 h having 68 U mg−1 of intracellular cholesterol oxidase activity. The strain transformed 1 g cholesterol to 0.05 g of androsta-1, 4-diene-3, 17-dione and 0.04 g of androst-4-ene-3, 17 dione within 48 h at 37°C with extracellular cholesterol oxidase activity at 12 U mg−1 and intracellular oxidase at 0.5 U mg−1.  相似文献   

5.
Nitrilase of Nocardia globerula NHB-2 was induced by short-chain aliphatic nitriles (valeronitrile > isobutyronitrile > butyronitrile > propionitrile) and exhibited activity towards aromatic nitriles (benzonitrile > 3-cyanopyridine > 4-cyanopyridine > m-tolunitrile > p-tolunitrile). Hyperinduction of nitrilase (6.67 U mgDCW−1, 18.7 U mL−1) was achieved in short incubation time (30 h, 30°C) through multiple feeding of isobutyronitrile in the growth medium. The nitrilase of this organism exhibits both substrate and product inhibition effects. In a fed batch reaction at 1 L scale using hyperinduced resting cells corresponding to 10 U mL−1 nitrilase activity (1.5 mgDCW mL−1), a total of 123.11 g nicotinic acid was produced at a rate of 24 g h−1 gDCW−1.  相似文献   

6.
A newly isolated Geobacillus sp. IIPTN (MTCC 5319) from the hot spring of Uttarakhand's Himalayan region produced a hyperthermostable α-amylase. The microorganism was characterized by biochemical tests and 16S rRNA gene sequencing. The optimal temperature and pH were 60°C and 6.5, respectively, for growth and enzyme production. Although it was able to grow in temperature ranges from 50 to 80°C and pH 5.5–8.5. Maximum enzyme production was in exponential phase with activity 135 U ml−1 at 60°C. Assayed with cassava as substrate, the enzyme displayed optimal activity 192 U ml−1 at pH 5.0 and 80°C. The enzyme was purified to homogeneity with purification fold 82 and specific activity 1,200 U mg−1 protein. The molecular mass of the purified enzyme was 97 KDa. The values of K m and V max were 36 mg ml−1 and 222 μmol mg−1 protein min−1, respectively. The amylase was stable over a broad range of temperature from 40°C to 120°C and pH ranges from 5 to 10. The enzyme was stimulated with Mn2+, whereas it was inhibited by Hg2+, Cu2+, Zn2+, Mg2+, and EDTA, suggesting that it is a metalloenzyme. Besides hyperthermostability, the novelty of this enzyme is resistance against protease.  相似文献   

7.
8.
Cui  Fengjie  Li  Yin  Liu  Zhiqiang  Zhao  Hui  Ping  Lifeng  Ping  Liying  Yang  Yinan  Xue  Yaping  Yan  Lijiao 《World journal of microbiology & biotechnology》2009,25(4):721-725
The objective of this study was to maximize production of xylanase by a newly isolated strain Penicillium thiersii ZH-19. Response surface methodology was employed to study the effects of significant factors such as pH, temperature, xylan concentration, and cultivation time, on the production of xylanase by Penicillium thiersii ZH-19. The optimal fermentation parameters for enhanced xylanase production were found to be pH 7.72, temperature 24.8°C, xylan 13.2 g l−1 and the fermentation time 125.8 h. The model predicted a xylanase activity of 75.24 U ml−1. Verification of the optimization showed that the maximum xylanase production reached 73.50 U mL−1 in the flask experiments and 80.23 U mL−1 in the scale of 15-L fermenter under the optimal condition.  相似文献   

9.
Cholesterol oxidase activity was studied during biotransformation of cholesterol to androsta-1,4-diene-3,17-dione (ADD) by Chryseobacterium gleum. Spent LB media, containing cholesterol (3 mM≈1 g l−1) where the bacterium was grown for 24 h, at 30°C with constant shaking at 120 rpm, had the highest enzyme activity (167 U mg−1). The growing cells produced 0.076 g ADD from 1 g cholesterol l−1.  相似文献   

10.
To develop a new enzymatic xylose-to-xylitol conversion, deeper knowledge on the regulation of xylose reductase (XR) is needed. To this purpose, a new strain of Debaryomyces hansenii (UFV-170), which proved a promising xylitol producer, was cultivated in semi-synthetic media containing different carbon sources, specifically three aldo-hexoses (d-glucose, d-galactose and d-mannose), a keto-hexose (d-fructose), a keto-pentose (d-xylose), three aldo-pentoses (d-arabinose, l-arabinose and d-ribose), three disaccharides (maltose, lactose and sucrose) and a pentitol (xylitol). The best substrate was lactose on which cell concentration reached about 20 g l−1 dry weight (DW), while the highest specific growth rates (0.58–0.61 h−1) were detected on lactose, d-mannose, d-glucose and d-galactose. The highest specific activity of XR (0.24 U mg−1) was obtained in raw extracts of cells grown on d-xylose and harvested in the stationary growth phase. When grown on cotton husk hemicellulose hydrolyzates, cells exhibited XR activities five to seven times higher than on semi-synthetic media.  相似文献   

11.
The purpose of the present research is to study the production of thermophilic alkaline protease by a local isolate, Streptomyces sp. CN902, under solid state fermentation (SSF). Optimum SSF parameters for enzyme production have been determined. Various locally available agro-industrial residues have been screened individually or as mixtures for alkaline protease production in SSF. The combination of wheat bran (WB) with chopped date stones (CDS) (5:5) proved to be an efficient mixture for protease production as it gave the highest enzyme activity (90.50 U g−1) when compared to individual WB (74.50 U g−1) or CDS (69.50 U g−1) substrates. This mixed solid substrate was used for the production of protease from Streptomyces sp. CN902 under SSF. Maximal protease production (220.50 U g−1) was obtained with an initial moisture content of 60%, an inoculum level of 1 × 108 (spore g−1 substrate) when incubated at 45°C for 5 days. Supplementation of WB and CDS mixtures with yeast extract as a nitrogen source further increased protease production to 245.50 U g−1 under SSF. Our data demonstrated the usefulness of solid-state fermentation in the production of alkaline protease using WB and CDS mixtures as substrate. Moreover, this approach offered significant benefits due to abundant agro-industrial substrate availability and cheaper cost.  相似文献   

12.
A 60 kDa phospholipase D (PLD) was obtained from Streptomyces olivochromogenes by one-step chromatography on Sepharose CL-6B. Maximal activity was at pH 8 and 75°C and the enzyme was stable from pH 7 to 13 and from 55 to 75°C. Thermal and pH stability with temperature optimum of the enzyme were highest among Streptomyces PLDs reported so far. The activity was Ca2+-dependent and enhanced by detergents. The Km and Vmax values for phosphatidylcholine were 0.6 mM and 650 μmol min−1 mg−1, respectively. In addition, the enzyme also revealed transphosphatidylation activity, which was optimum at pH 8 and 50°C. The first 15 amino acid residues of the N terminal sequence were ADYTPGAPGIGDPYY, which are significantly different from the other known PLDs. The enzyme may therefore be a novel PLD with potential application in the lipid industry.  相似文献   

13.
Xanthomonas campestris pv phaseoli produced an extracellular endoinulinase (9.24 ± 0.03 U mL−1) in an optimized medium comprising of 3% sucrose and 2.5% tryptone. X. campestris pv. phaseoli was further subjected to ethylmethanesulfonate mutagenesis and the resulting mutant, X. campestris pv. phaseoli KM 24 demonstrated inulinase production of 22.09 ± 0.03 U mL−1 after 18 h, which was 2.4-fold higher than that of the wild type. Inulinase production by this mutant was scaled up using sucrose as a carbon source in a 5-L fermenter yielding maximum volumetric (21,865 U L−1 h−1) and specific (119,025 U g−1 h−1) productivities of inulinase after 18 h with an inulinase/invertase ratio of 2.6. A maximum FOS production of 11.9 g L−1 h−1 and specific productivity of 72 g g−1 h−1 FOS from inulin were observed in a fermenter, when the mutant was grown on medium containing 3% inulin and 2.5% tryptone. The detection of mono- and oligosaccharides in inulin hydrolysates by TLC analysis indicated the presence of an endoinulinase. This mutant has potential for large-scale production of inulinase and fructooligosaccharides.  相似文献   

14.
Marine bacterial isolates were screened for phospholipase C (PLC) activity on PCY agar plates containing phosphatidylcholine (PC) as substrate. The strain that showed the highest activity on a PCY screening agar plate and a thin-layer chromatography was identified as a strain of Pseudoalteromonas and subsequently designated Pseudoalteromonas sp. J937. The extracellular PLC of the strain J937 was purified to a specific activity of 33 U mg−1 protein by serial ion exchange and gel filtration column chromatography. It had a molecular mass of 32 kDa estimated by SDS–PAGE. The optimal pH and temperature of the enzyme were about pH 8 and 45°C, respectively. The PLC hydrolyzed phosphatidylethanolamine as well as PC but not other glycerophospholipids. Its activity was enhanced by 150% with Ca2+ (200 mM) and by 180% with Na+ (500 mM), suggesting that the purified PLC is a marine-type enzyme.  相似文献   

15.
Luo H  Huang H  Yang P  Wang Y  Yuan T  Wu N  Yao B  Fan Y 《Current microbiology》2007,55(3):185-192
A novel phytase gene appA, with upstream and downstream sequences from Citrobacter amalonaticus CGMCC 1696, was cloned by degenerate polymerase chain reaction (PCR), and thermal asymmetric interlaced (TAIL) PCR and was overexpressed in Pichia pastoris. Sequence analysis revealed one open reading frame that consisted of 1311 bp encoding a 436–amino-acid protein, which had a deduced molecular mass of 46.3 kDa. The phytase appA belongs to the histidine acid phosphatase family and exhibits the highest identity (70.1%) with C. braakii phytase. The gene was overexpressed in P. pastoris. The secretion yield of recombinant appA protein was accumulated to approximately 4.2 mg·mL−1, and the enzyme activity level reached 15,000 U·mL−1, which is higher than any previous reports. r-appA was glycosylated, as shown by Endo H treatment. r-appA was purified and characterized. The specific activity of r-appA for sodium phytate was 3548 U·mg−1. The optimum pH and temperature for enzyme activity were 4.5 and 55°C, respectively. r-appA was highly resistant to pepsin or trypsin treatment. This enzyme could be an economic and efficient alternative to the phytases currently used in the feed industry.  相似文献   

16.
A recombinant putative β-galactosidase from Thermoplasma acidophilum was purified as a single 57 kDa band of 82 U mg−1. The molecular mass of the native enzyme was 114 kDa as a dimer. Maximum activity was observed at pH 6.0 and 90°C. The enzyme was unstable below pH 6.0: at pH 6 its half-life at 75°C was 28 days but at pH 4.5 was only 13 h. Catalytic efficiencies decreased as p-nitrophenyl(pNP)-β-d-fucopyranoside (1067) > pNP-β-d-glucopyranoside (381) > pNP-β-d-galactopyranoside (18) > pNP-β-d-mannopyranoside (11 s−1 mM−1), indicating that the enzyme was a β-glycosidase.  相似文献   

17.
Xu X  Yu Y  Shi Y 《Biotechnology letters》2011,33(4):763-768
Growth and sporulation of Verticillium lecanii on inert and organic carriers (sugar-cane bagasse, corncob, rice straw, polyurethane foam and activated carbon) in a solid-state fermentation process was studied. Sugar-cane bagasse and polyurethane foam produced 1010 spores g−1 dry carrier whereas corncob, rice straw, and activated carbon yielded, respectively 8 × 109, 4 × 109, and 3 × 108 spores g−1. Chitinase activity of the conidia was in the following order: sugar-cane bagasse (3.3 U mg−1) > wheat bran (3.0 U mg−1) > polyurethane foam (2.7 U mg−1). There was no significant difference (2.5–2.7 U mg−1) in the proteinase activity among the conidia from the three cultures. Scanning electron microscopy shows that aerial mycelium freely penetrated into the internal area of polyurethane foam. Sugar-cane bagasse provided enough area for vegetative hyphae to attach. Of the carriers analyzed, polyurethane foams and sugar-cane bagasse were the best carriers for V. lecanii growth and spore production.  相似文献   

18.
The production of chitinases and hydrophobins from Lecanicillium lecanii was influenced by the cultivation method and type of carbon source. Crude enzyme obtained from solid-substrate culture presented activities of exochitinases (32 and 51 kDa), endochitinases (26 kDa), β-N-acetylhexosaminidases (61, 80, 96 and 111 kDa). Additionally, submerged cultures produced exochitinases (32 and 45 kDa), endochitinases (10 and 26 kDa) and β-N-acetylhexosaminidases (61, 96 and 111 kDa). β-N-acetylhexosaminidases activity determined in solid-substrate culture with added chitin was ca. threefold (7.58 ± 0.57 U mg−1) higher than submerged culture (2.73 + 0.57 U mg−1). Similarly, hydrophobins displayed higher activities in solid-substrate culture (627.3 ± 2 μg protein mL−1) than the submerged one (57.4 ± 4.7 μg protein mL−1). Molecular weight of hydrophobins produced in solid-substrate culture was 7.6 kDa and they displayed surface activity on Teflon.  相似文献   

19.
In vitro transgenic hairy root cultures provide a rapid system for physiological, biochemical studies and screening of plants for their phytoremediation potential. The hairy root cultures of Brassica juncea L. showed 92% decolorization of Methyl orange within 4 days. Out of the different redox mediators that were used to achieve enhanced decolorization, 2, 2′-Azinobis, 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was found to be the most efficient. Laccase activity of 4.5 U mg−1 of protein was observed in hairy root cultures of Brassica juncea L., after the decolorization of Methyl orange. Intracellular laccase produced by B. juncea root cultures grown in MS basal medium was purified up to 2.0 fold with 6.62 U mg−1 specific activity using anion-exchange chromatography. Molecular weight of the purified laccase was estimated to be 148 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme efficiently oxidized ABTS which was also required for oxidation of the other tested substrates. The pH and temperature optimum for laccase activity were 4.0 and 40°C, respectively. The purified enzyme was stable up to 50°C and was stable in the pH range of 4.0–6.0. Laccase activity was strongly inhibited by sodium azide, EDTA, dithiothreitol and l-cysteine. The purified enzyme decolorized various textile dyes in the presence of ABTS as an efficient redox mediator. These findings contribute to a better understanding of the enzymatic process involved in phytoremediation of textile dyes by using hairy roots.  相似文献   

20.
A recombinant β-galactosidase from Sulfolobus solfataricus produced galactooligosaccharides (GOS) from lactose by transgalactosylation. The enzyme activity for GOS production was maximal at pH 6.0 and 85°C. The half-lives of the recombinant β-galactosidase at 70, 75, 80, 85, and 90°C were 700, 111, 72, 43, and 2.4 h, respectively, and its deactivation energy was 213 kJ mol−1. The optimal amount of enzyme for effective GOS production was 3.6 U of enzyme ml−1. GOS production increased with increasing lactose concentration, whereas the yield of GOS from lactose was almost constant. The rates of hydrolysis and transgalactosylation reactions increased with increasing temperature but the final concentration of GOS was maximal at 80°C. Under the conditions of pH 6.0, 80°C, 600 g lactose l−1, and 3.6 U enzyme ml−1, 315 g GOS l−1 were obtained for 56 h with a yield of 52.5% (w/w). The β-galactosidase from S. solfataricus produced GOS with the highest concentration and yield among thermostable β-galactosidases reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号