共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Houštěk M. Holub 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1994,164(6):459-463
Mild cold acclimation (22°C, 3 weeks) of hairless mice was shown to increase 5-fold the brown adipose tissue uncoupling protein content in immunodeficient BALB/c nu/nu mice, but by only 2.3-fold in immunocompetent BFU mice. The difference in activation of brown adipose tissue thermogenic capacity was due to a 2-fold increase in the content of brown adipose tissue in nu/nu mice only, which was paralleled by an increase in brown adipose tissue protein but not DNA content. Likewise, only in nu/nu mice the cold acclimation increased the reaction of natural killer cells in blood and peritoneal exudate with a shift from spleen to lymph nodes and increased the phagocytic index. The results indicate that the immune system may influence the defence against cold at the level of brown adipose tissue thermogenesis.Abbreviations AU
arbitrary unit(s)
- bw
body weight
- HEMA
2-hydromethyl-metacrylate copolymer
- BAT
brown adipose tissue
- UCP
uncoupling protein
- ATPase
mitochondrial FoF1-ATPsynthase
- IL-1
interleukin 1
- TNF
tumour necrosis factor
- NK cells
natural killer cells
-
T
a
ambient temperature 相似文献
2.
Lim S Honek J Xue Y Seki T Cao Z Andersson P Yang X Hosaka K Cao Y 《Nature protocols》2012,7(3):606-615
Exposure of humans and rodents to cold activates thermogenic activity in brown adipose tissue (BAT). This protocol describes a mouse model to study the activation of BAT and angiogenesis in adipose tissues by cold acclimation. After a 1-week exposure to 4 °C, adult C57BL/6 mice show an obvious transition from subcutaneous white adipose tissue (WAT) into brown-like adipose tissue (BRITE). The BRITE phenotype persists after continuous cold exposure, and by the end of week 5 BRITE contains a high number of uncoupling protein-1-positive mitochondria, a characteristic feature of BAT. During the transition from WAT into BRITE, the vascular density is markedly increased owing to the activation of angiogenesis. In BAT, cold exposure stimulates thermogenesis by increasing the mitochondrial content and metabolic rate. BAT and the increased metabolic rate result in a lean phenotype. This protocol provides an outstanding opportunity to study the molecular mechanisms that control adipose mass. 相似文献
3.
4.
Johannes Rafael Pavel Vsiansky Gerhard Heldmaier 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1985,155(4):521-528
Summary The composition and oxidative capacity of brown adipose tissue (BAT) were investigated in Djungarian hamsters kept under natural photoperiod, either indoors at neutralT
a (23°C) or under outdoor conditions. BAT comprises up to 5% of the body weight in summer/indoor hamster, with lipid representing 86% of the total tissue mass. Tissue mass and thermogenic capacity are inversely related during seasonal adaptation: 30% decrease of total DNA, accompanied by extensive lipid depletion, reduces the amount of BAT by almost 60% during acclimatization from summer/indoor to winter/outdoor conditions. Mitochondrial protein in BAT is increased by a factor of 2.6 concomitantly, and by a factor of 4 when related to body weight (body weight reduction 36%).Cytochrome oxidase activity in different brown fat deposits varies by up to 150% in summer/indoor hamsters; depending on the fat pad, the enzyme activity is increased 200%–700% during adaptation to winter/outdoor conditions.Natural photoperiod is decisive in determining the seasonal adaptation of DNA content in BAT and of body weight. Short photoperiod alone may lead to depletion of lipid content of BAT and thus decrease the tissue mass practically to the lowest seasonal level, even though both parameters may be also influenced byT
a. One third of the maximum adaptive increase of tissue mitochondria may be attributed to seasonal changes in photoperiod and up to two thirds toT
a. Photoperiod establishes a fixed fundament of slow-reacting functional adaptation of BAT, whereas the effect of decreasedT
a depends on the rate and duration of cold influence.Abbreviations
BAT
brown adipose tissue
-
NST
nonshivering thermogenesis
-
T
a
ambient temperature 相似文献
5.
6.
da Silva Jhonattan Toniatto Cella Paola Sanches Testa Mayra Tardelli de Jesus Perandini Luiz Augusto Festuccia William T. Deminice Rafael Chimin Patricia 《Journal of physiology and biochemistry》2020,76(4):663-672
Journal of Physiology and Biochemistry - The present study investigated the effects of swimming physical training either thermoneutral or below thermoneutral water temperature on white (WAT) and... 相似文献
7.
Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice 总被引:4,自引:0,他引:4
Tsubone T Masaki T Katsuragi I Tanaka K Kakuma T Yoshimatsu H 《Regulatory peptides》2005,130(1-2):97-103
To examine the involvement of ghrelin in obesity, we investigated the effects of treatment with peripherally administered ghrelin on food intake, adiposity, and expression of uncoupling protein (UCP) mRNA in brown (BAT) and white (WAT) adipose tissue in mice. Acute bolus administration of ghrelin at a dose of 120 nmol/kg increased cumulative food intake over 4 and 24 h as compared to controls (p<0.05 for each), whereas 12 nmol/kg/day ghrelin showed no remarkable effect (p>0.1). Chronic repeated treatment with 12 nmol/kg/day ghrelin for 7 days increased body weight and adiposity assessed by the weight of adipose tissue, triglyceride content in WAT (p<0.05 for each versus control). In addition, the same treatment decreased and increased mRNA expression of BAT UCP1 and WAT UCP2, respectively (p<0.05 for each). In conclusion, ghrelin can regulate body weight, adiposity and UCPs mRNA expression in mice. The present results provide evidence for a new regulatory loop involving ghrelin and UCP, and add novel insights into the regulatory mechanisms of obesity. 相似文献
8.
Brown adipose tissue (BAT) plays a key role in energy expenditure through its specialized thermogenic function. Therefore, BAT activation may help prevent and/or treat obesity. Interestingly, subcutaneous white adipose tissue (WAT) also has the ability to differentiate into brown-like adipocytes and may potentially contribute to increased thermogenesis. We have previously reported that eicosapentaenoic acid (EPA) reduces high-fat (HF)-diet-induced obesity and insulin resistance in mice. Whether BAT mediates some of these beneficial effects of EPA has not been determined. We hypothesized that EPA activates BAT thermogenic program, contributing to its antiobesity effects. BAT and WAT were harvested from B6 male mice fed HF diets supplemented with or without EPA. HIB 1B clonal brown adipocytes treated with or without EPA were also used. Gene and protein expressions were measured in adipose tissues and H1B 1B cells by quantitative polymerase chain reaction and immunoblotting, respectively. Our results show that BAT from EPA-supplemented mice expressed significantly higher levels of thermogenic genes such as PRDM16 and PGC1α and higher levels of uncoupling protein 1 compared to HF-fed mice. By contrast, both WATs (subcutaneous and visceral) had undetectable levels of these markers with no up regulation by EPA. HIB 1B cells treated with EPA showed significantly higher mRNA expression of PGC1α and SIRT2. EPA treatment significantly increased maximum oxidative and peak glycolytic metabolism in H1B 1B cells. Our results demonstrate a novel and promising role for EPA in preventing obesity via activation of BAT, adding to its known beneficial anti-inflammatory effects. 相似文献
9.
Specific binding of 125I-labelled human somatotropin was demonstrated in isolated hepatocytes from male mice. In the presence of divalent cations (Ca2+ and Mg2+) the binding of 125I-labelled human somatotropin was competitive with ovine prolactin. Scatchard analysis of competition data indicated a KD of 1.4 +/- 0.2 nM and a binding capacity of 13 000 +/- 2000 sites/cell. In the absence of divalent cations and in the presence of EDTA, human and bovine somatotropins were found to be equally effective to displace bound 125I-labelled human somatotropin, while ovine prolactin showed a weak competition. In this case, the binding capacity was 8400 +/- 1500 sites/cell and the KD was 1.1 +/- 0.1 nM. 相似文献
10.
Mestdagh R Dumas ME Rezzi S Kochhar S Holmes E Claus SP Nicholson JK 《Journal of proteome research》2012,11(2):620-630
A two by two experimental study has been designed to determine the effect of gut microbiota on energy metabolism in mouse models. The metabolic phenotype of germ-free (GF, n = 20) and conventional (n = 20) mice was characterized using a NMR spectroscopy-based metabolic profiling approach, with a focus on sexual dimorphism (20 males, 20 females) and energy metabolism in urine, plasma, liver, and brown adipose tissue (BAT). Physiological data of age-matched GF and conventional mice showed that male animals had a higher weight than females in both groups. In addition, conventional males had a significantly higher total body fat content (TBFC) compared to conventional females, whereas this sexual dimorphism disappeared in GF animals (i.e., male GF mice had a TBFC similar to those of conventional and GF females). Profiling of BAT hydrophilic extracts revealed that sexual dimorphism in normal mice was absent in GF animals, which also displayed lower BAT lactate levels and higher levels of (D)-3-hydroxybutyrate in liver, plasma, and BAT, together with lower circulating levels of VLDL. These data indicate that the gut microbiota modulate the lipid metabolism in BAT, as the absence of gut microbiota stimulated both hepatic and BAT lipolysis while inhibiting lipogenesis. We also demonstrated that (1)H NMR metabolic profiles of BAT were excellent predictors of BW and TBFC, indicating the potential of BAT to fight against obesity. 相似文献
11.
Miriam Hoene Jia Li Hans-Ulrich Häring Cora Weigert Guowang Xu Rainer Lehmann 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(10):1563-1570
Brown adipose tissue (BAT) is a thermogenic organ with a vital function in small mammals and potential as metabolic drug target in humans. By using high-resolution LC-tandem-mass spectrometry, we quantified 329 lipid species from 17 (sub)classes and identified the fatty acid composition of all phospholipids from BAT and subcutaneous and gonadal white adipose tissue (WAT) from female and male mice. Phospholipids and free fatty acids were higher in BAT, while DAG and TAG levels were higher in WAT. A set of phospholipids dominated by the residue docosahexaenoic acid, which influences membrane fluidity, showed the highest specificity for BAT. We additionally detected major sex-specific differences between the BAT lipid profiles, while samples from the different WAT depots were comparatively similar. Female BAT contained less triacylglycerol and more phospholipids rich in arachidonic and stearic acid whereas another set of fatty acid residues that included linoleic and palmitic acid prevailed in males. These differences in phospholipid fatty acid composition could greatly affect mitochondrial membranes and other cellular organelles and thereby regulate the function of BAT in a sex-specific manner. 相似文献
12.
Psychological stress leads to sympathetically mediated increases in body temperature. Brown adipose tissue (BAT) is often thought to be the main organ to produce heat in response to sympathetic activation. However, we have previously shown that the hyperthermia evoked by conditioned fear in rats is not the result of thermogenesis in the interscapular area of the back, where the largest deposit of BAT is found. Stress-induced hyperthermia is widely used as an anxiety indicator in mice. We thus sought to verify if this response can be attributed to BAT thermogenesis. Eight C57BL/6 mice were shaved in the interscapular and lumbar back areas prior to testing. Animals received injections of 20 mg/kg dl-propranolol or saline and were placed in either an open field or 4 °C enclosure for 30 min. Infrared thermographic images were taken each minute to record interscapular, lumbar and tail skin temperatures. Propranolol reduced the stress-induced hyperthermia observed during open field exposure (p<0.01), as indicated by the lumbar back skin temperature. Nevertheless, the difference between interscapular and lumbar skin temperatures remained constant, suggesting that this hyperthermia was not caused by BAT thermogenesis. There was no observable effect of propranolol on behavior, as animals remained active throughout the test. In contrast, the difference between interscapular and lumbar back skin temperature was increased by 2 °C during cold exposure. This increase was abolished after propranolol (p<0.001), indicating BAT thermogenesis during this challenge. Hence, just as rats exposed to conditioned fear, mice exposed to an open field display a stress-induced hyperthermia that is not caused by BAT thermogenesis. 相似文献
13.
Commins SP Watson PM Frampton IC Gettys TW 《American journal of physiology. Endocrinology and metabolism》2001,280(2):E372-E377
We tested the hypothesis that leptin, in addition to reducing body fat by restraining food intake, reduces body fat through a peripheral mechanism requiring uncoupling protein 1 (UCP1). Leptin was administered to wild-type (WT) mice and mice with a targeted disruption of the UCP1 gene (UCP1 deficient), while vehicle-injected control animals of each genotype were pair-fed to each leptin-treated group. Leptin reduced the size of white adipose tissue (WAT) depots in WT mice but not in UCP1-deficient animals. This was accompanied by a threefold increase in the amount of UCP1 protein and mRNA in the brown adipose tissue (BAT) of WT mice. Leptin also increased UCP2 mRNA in WAT of both WT and UCP1-deficient mice but increased UCP2 and UCP3 mRNA only in BAT from UCP1-deficient mice. These results indicate that leptin reduces WAT through a peripheral mechanism requiring the presence of UCP1, with little or no involvement of UCP2 or UCP3. 相似文献
14.
I L Cameron 《Texas reports on biology and medicine》1975,33(3):391-396
The multocular fat cells of brown adipose tissue of the mouse show an age-dependent change to the unilocular fat cell type. This change starts immediately after birth and continues throughout life. This morphological change can be correlated with the animal's age-dependent decrease in tolerance to a cold environment. 相似文献
15.
Respiratory processes in brown adipose tissue 总被引:3,自引:0,他引:3
16.
The question of whether tumors are warmer or colder than surrounding tissue is considered in these experiments which use a highly suitable animal model, the hairless mouse. Temperatures of skin over induced growing subdermal tumors in these mice were monitored by AGA 680 Color Thermovision. The skin over the tumors does not cool over time but on the contrary becomes warmer. This is probably due to an increase in vascularization rather than increased metabolic rate. 相似文献
17.
Pyruvate dehydrogenase-complex activity in brown adipose tissue of gold thioglucose-obese mice. 下载免费PDF全文
G J Cooney G S Denyer A L Kerbey R L Frankland S C Blair P F Williams I D Caterson 《The Biochemical journal》1990,270(1):257-259
The activity of pyruvate dehydrogenase (PDH) complex and PDH kinase were measured in brown adipose tissue (BAT) of 4-week-gold thioglucose (GTG)-obese mice. The proportion of PDH complex in the active dephosphorylated form was 2-fold higher in BAT of post-absorptive obese mice compared with lean controls. This result was consistent with the higher circulating insulin concentration observed in GTG-obese mice. In both obese and lean mice the PDH-complex activity in BAT decreased after 24 h starvation and increased in response to supraphysiological insulin injection, indicating that the PDH complex is insulin-responsive in BAT of GTG-obese mice. There was no difference in the PDH kinase activity of BAT in post-absorptive or insulin-injected lean and obese mice, suggesting that the higher PDH-complex activity in obese mice was not due to decreased PDH kinase activity. There is no evidence for a decreased activity of PDH complex contributing to insulin resistance in BAT of 4-week-GTG-obese mice. 相似文献
18.
Miguel Tillo William C. Lamanna Chrissa A. Dwyer Daniel R. Sandoval Ariane R. Pessentheiner Norah Al-Azzam Stphane Sarrazin Jon C. Gonzales Shih-Hsin Kan Alexander Y. Andreyev Nicholas Schultheis Bryan E. Thacker Charles A. Glass Patricia I. Dickson Raymond Y. Wang Scott B. Selleck Jeffrey D. Esko Philip L.S.M. Gordts 《The Journal of biological chemistry》2022,298(8)
Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues. Partitioning of dietary [3H]triolein showed a marked increase in intestinal uptake and secretion, whereas hepatic production and clearance of triglyceride-rich lipoproteins did not differ from wildtype controls. Uptake of dietary triolein was also elevated in brown adipose tissue (BAT), and notable increases in beige adipose tissue occurred, resulting in hyperthermia, hyperphagia, hyperdipsia, and increased energy expenditure. Furthermore, fasted MPS IIIa mice remained hyperthermic when subjected to low temperature but became cachexic and profoundly hypothermic when treated with a lipolytic inhibitor. We demonstrated that the reliance on increased lipid fueling of BAT was driven by a reduced ability to generate energy from stored lipids within the depot. These alterations arose from impaired autophagosome–lysosome fusion, resulting in increased mitochondria content in beige and BAT. Finally, we show that increased mitochondria content in BAT and postprandial dyslipidemia was partially reversed upon 5-week treatment with recombinant sulfamidase. We hypothesize that increased BAT activity and persistent increases in energy demand in MPS IIIa mice contribute to the negative energy balance observed in patients with MPS IIIa. 相似文献
19.
20.
1. A study of the mitochondrial phospholipids, phospholipid fatty acid patterns and enzyme activities was investigated in brown tissue (B.A.T.) from rats chronically exposed to cold and/or treated with thyroxine. 2. The total activities of the oxidative enzymes were increased after cold exposure, but not after thyroxine treatment. 3. Cold exposure increased the amount of phosphatidylethanolamine, phosphatidylcholine, cardiolipin and lysophospholipids, the effect being greatest for phosphatidylethanolamine. At the same time, there were marked alterations in the fatty acid composition of the mitochondrial phospholipids (decrease of palmitic, palmitoleic and oleic acids ; increase of stearic, linoleic and arachidonic acids). 4. All these cold-induced alterations were reversed by re-adaptation of the animal to a normal temperature range. 5. The alterations of the fatty acid composition of phospholipids could be explained by changes in the rate of individual fatty acid biosynthesis. 相似文献