首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucagon can interact rapidly with multilamellar vesicles of dimyristoyl glycerophosphocholine over a narrow temperature range around or above the phase transition temperature of the pure phospholipid. The temperature dependence of the rates arises, in large part, from glucagon-induced alterations in the phase transition properties of the phospholipid. Similar effects are observed with dilaury glycerophosphocholine but the rate of reaction of glucagon with multilamellar dipalmitoyl glycerophosphocholine is too slow to measure.The rate of reaction of glucagon with equimolar mixtures of two phospholipid molecules has also been studied. Mixtures of dilauryl glycerophosphocholine and distearoyl glycerophosphocholine are known to exhibit lateral phase separation in the gel state. The presence of distearoyl glycerophosphocholine has no effect on the rate of reaction with glucagon, despite the increased number of phase boundaries present. In the case of mixtures of dilauryl glycerophosphocholine and dimyristoyl glycerophosphocholine, glucagon appears to induce some lateral phase separation. This is demonstrated by the ability of glucagon to react rapidly with this lipid mixture, even at temperatures well below the phase transition temperature of the mixture and by differential scanning calorimetry.The thermodynamics of the binding of glucagon to dimyristoyl glycerophosphocholine and dilauryl glycerophosphocholine were analyzed with Scatchard plots calculated from measurements of the fluorescence enhancement caused by lipids. Equilibrium binding constants of glucagon to dimyristoyl glycerophosphocholine and dilauryl glycerophosphocholine are 1·105 and 5·104 M?1, respectively. These values are relatively insensitive to temperature, indicating that the equilibrium being measured is between lipid-bound glucagon and free lipid which has had its phase transition properties altered. The number of moles of lipid bound per mole of glucagon decreases markedly above the phase transition temperature. In the water-soluble complex formed between glucagon and dimyristoyl glycerophosphocholine, the peptide binds directly to only 40% of the lipid molecules but, nevertheless, is able to modify the phase transition properties of all of the lipid in the particle.  相似文献   

2.
Interaction of glucagon with dimyristoyl glycerophosphocholine   总被引:2,自引:0,他引:2  
Glucagon can form amphipathic helices and can interact with dimyristoyl glycerophosphocholine at temperatures below the phase transition leading to a shift in the fluorescence emission maximum of tryptophan from 350 to 338 nm and a 3-fold enhancement of fluorescence intensity as well as a change in the polarization of fluorescence. The circular dichroism properties of the lipid-associated glucagon indicates that it has an increased content of alpha-helix. The phase transition temperature of the lipid as monitored by pyrene excimer fluorescence is not altered by interaction with glucagon although at higher glucagon/lipid ratios a decrease in excimer formation is noted at low temperature. Above the phase transition temperature, the addition of lipid has no effect on the fluorescence emission or circular dichroism of glucagon. Thus this hormone can interact with dimyristoyl glycerophosphocholine and this interaction is stronger below the phase transition temperature than above it.  相似文献   

3.
Glucagon is found to interact with dimyristoyl glycerophosphocholine both above and below the phase transition temperature of the lipid. Above the phase transition temperature the interaction is manifested by an increase in the rate of vesicle aggregation and by an increased permeability of unilamellar vesicles to Eu3+ and to Fe(CN)63−. However, no stable lipoprotein complex can be detected by gel filtration. Below the phase transition glucagon can form stable complexes with dimyristoyl glycerophosphocholine vesicles but cannot rapidly rearrange these vesicles to disk-shaped particles until the phase transition temperature is approached. The energy of activation for the dissociation of glucagon from the disk-shaped lipoprotein particle is 29 kcal/mol at temperatures above 36°C but increases markedly at lower temperatures, as the region of the lipid phase transition is approached. This increase in energy of activation at lower temperatures is most probably due to the larger amount of energy required to rearrange gel-state lipid in the transition state and provides an explanation for the unusual kinetic stability of the glucagon-dimyristoyl glycerophosphocholine lipoprotein complex only at temperatures below the phase transition of the lipid.  相似文献   

4.
The effect of free fatty acids on the phase transition characteristics and fluidity of bilayers of dimyristoyl glycerophosphocholine were studied by pyrene eximer fluorescence and differential scanning calorimetry. High melting saturated fatty acids with chain lengths of 12–18 carbon atoms raise the phase transition temperature and enhance the ability of pyrene to form clusters in the gel state while not affecting the fluidity of the membrane in the liquid crystal state. Low melting unsaturated fatty acids lower the phase transition temperature and decrease the ability of pyrene to form clusters in the gel state while not affecting the fluidity of the membrane in the liquid crystal state. The effects of the very long chain fatty acids, arachidic (C 20) and behenic (C 22) appear to be similar to those of cholesterol in that they cause a broadening of the phase transition with a lowering of the transition enthalpy but have little effect on the temperature at which the phase transition occurs.  相似文献   

5.
The effect of phospholipid structure on the interaction between small peptides and phospholipid membranes has been studied by high-sensitivity differential scanning calorimetry. The peptides used, N-Boc-beta-Ala-Trp-Met-Arg-Phe-NH2 and N-Boc-beta-Ala-Trp-Met-Lys-Phe-NH2, are basic analogs of the hormone pentagastrin. These peptides split the gel-to-liquid crystalline phase transition of synthetic phosphatidylcholines into two components. For dimyristoyl (DMPC), dipalmitoyl (DPPC) and 1-stearoyl-2-oleoyl (SOPC) phosphatidylcholines, one component remains at the temperature corresponding to that of pure lipid and the other one is shifted towards higher temperatures. With increasing peptide concentration there is a gradual increase in the enthalpy of the high-temperature component at the expense of the low-temperature one, and there is also an increase in the total enthalpy of the transition. A mixture of the peptide with distearoylphosphatidylcholine (DSPC) behaves differently, with the transition occurring at a temperature below that of the pure lipid increasing with peptide concentration. The susceptibility of various phosphatidylcholines to perturbation by the peptides increases in the order DMPC greater than SOPC greater than DPPC greater than DSPC. The effect of these peptides on the phase transitions of acidic phosphatidylglycerols is generally greater than with the corresponding phosphatidylcholines, but the dependence on the length of lipid hydrocarbon chains is similar. Perturbation of the thermotropic phase transition is strongest for dimyristoylphosphatidylglycerol, followed by the dipalmitoyl and the distearoyl analogs. The effect of the peptides on the phase transition of dimyristoylphosphatidylserine is significantly smaller compared to that observed with dimyristoylphosphatidylglycerol and it is further reduced for dimyristoylphosphatidic acid. The phase transition of this latter lipid remains virtually unchanged, even in the presence of high concentrations of the peptide. Similar resistance to the perturbation of the phase transitions by the peptides is observed for synthetic phosphatidylethanolamine. The different susceptibility of various phospholipids to perturbation by the peptides is suggested to be related to different degrees of intermolecular interaction between phospholipid molecules, and particularly to different abilities of phospholipids to form intermolecular hydrogen bonding.  相似文献   

6.
W K Surewicz  R M Epand 《Biochemistry》1984,23(25):6072-6077
The binding of pentagastrin and three other structurally related pentapeptides to phospholipid vesicles has been studied by fluorescence spectroscopy. The fluorescence of the tryptophan residues of these peptides exhibits an increased quantum yield upon binding to phospholipid vesicles. This is accompanied by a blue shift of the maximum emission, indicative of the incorporation of the tryptophan residue into a more hydrophobic environment. The affinity of the peptides for a zwitterionic phospholipid, dimyristoylphosphatidylcholine (DMPC), increases in the following order: N-t-Boc-beta-Ala-Trp-Met-Gly-Phe-NH2 greater than N-t-Boc-beta-Ala-Trp-Met-Arg-Phe-NH2 greater than N-t-Boc-beta-Ala-Trp-Met-Asp-Phe-NH2 greater than N-t-Boc-beta-Ala-Trp-Met-Phe-Asp-NH2. Comparison of the interaction of these various peptides with this phospholipid indicates that although the interaction is largely of hydrophobic nature, the structure of the polar amino acids and their electrostatic charge have significant influence on the nature of the bindings. In addition, the sequence of polar and apolar amino acids appears to be of importance. The higher affinity for DMPC of N-t-Boc-beta-Ala-Trp-Met-Asp-Phe-NH2 as compared to its "reversed" analogue N-t-Boc-beta-Ala-Trp-Met-Phe-Asp-NH2 suggests that the ability of the peptides to fold into amphiphatic structures can enhance their lipid binding affinity. For all peptides the interaction with DMPC is greater at 8 degrees C, i.e., below the lipid phase transition temperature, than at 40 degrees C, i.e., above the lipid phase transition temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Low ionic strength aqueous dispersion of dimyristoyl phosphatidylglycerol (DMPG) presents a rather peculiar gel-fluid thermal transition behavior. The lipid main phase transition occurs over a large temperature interval (ca. 17 degrees C), along which several calorimetric peaks are observed. Using lipids spin labeled at the acyl chain end, a two-peak electron spin resonance (ESR) spectrum is observed along that temperature transition region (named intermediate phase), at three different microwave frequencies: L-, X- and Q-bands. The intermediate phase ESR spectra are analyzed, and shown to be most likely due to spin labels probing two distinct types of lipid organization in the DMPG bilayer. Based on the ESR spectra parameters, a model for the DMPG intermediate phase is proposed, where rather fluid and hydrated domains, possibly high curvature regions, coexist with patches that are more rigid and hydrophobic.  相似文献   

8.
The purified Na+,Mg2(+)-ATPase from the Acholeplasma laidlawii B plasma membrane was reconstituted with dimyristoyl phosphatidylcholine and the lipid thermotropic phase behavior of the proteoliposomes formed was investigated by differential scanning calorimetry. The effect of this ATPase on the host lipid phase transition is markedly dependent on the amount of protein incorporated. At low protein/lipid ratios, the presence of increasing quantities of ATPase in the proteoliposomes increases the temperature and enthalpy while decreasing the cooperativity of the dimyristoyl phosphatidylcholine gel to liquid-crystalline phase transition. At higher protein/lipid ratios, the incorporation of increasing amounts of this enzyme does not further alter the temperature and cooperativity of the phospholipid chain-melting transition, but progressively and markedly decreases the transition enthalpy. Plots of lipid phase transition enthalpy versus protein concentration suggest that at the higher protein/lipid ratios each ATPase molecule removes approximately 1000 dimyristoyl phosphatidylcholine molecules from participation in the cooperative gel to liquid-crystalline phase transition of the bulk lipid phase. These results indicate that this integral transmembrane protein interacts in a complex, concentration-dependent manner with its host phospholipid and that such interactions involve both hydrophobic interactions with the lipid bilayer core and electrostatic interactions with the lipid polar head groups at the bilayer surface.  相似文献   

9.
Interactions of proteins and cholesterol with lipids in bilayer membranes.   总被引:6,自引:0,他引:6  
Mixtures of lipids and protein, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEM-PO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures of dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains were shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present. In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50-200 nm in length, around smooth patches of lipid. Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperature of the lipid is discussed.  相似文献   

10.
W K Surewicz  R M Epand 《Biochemistry》1985,24(13):3135-3144
The effects of amino acid substitutions in the pentapeptide pentagastrin on the nature of its interactions with dimyristoylphosphatidylcholine (DMPC) are assessed by differential scanning calorimetry and electron spin resonance. In two peptide analogues, the Asp at position 4 in pentagastrin (N-t-Boc-beta-Ala-Trp-Met-Asp-Phe-NH2) is replaced by Gly or Phe. These uncharged, more hydrophobic peptides have little effect on the transition temperature of DMPC, but they broaden the transition and lower the transition enthalpy as do integral membrane proteins. These peptides also mimic the behavior of integral membrane proteins in decreasing the order of a 5-doxylstearic acid spin probe below the transition temperature and in exhibiting a second immobilized lipid component using a 16-doxylstearic acid spin probe in DMPC. Three charged peptides were studied: pentagastrin, an analogue with positions 4 and 5 reversed (i.e., ending in Phe-Asp-NH2), and one with Asp replaced by Arg at position 4. All three of these charged peptides altered the phase transition behavior of DMPC to give two components, one above and one below the transition temperature of the pure lipid. With increasing peptide concentration, the higher melting transition became more prominent. The arginine-containing peptide produced the largest shifts in melting temperature followed by pentagastrin and then the "reversed" peptide. The arginine-containing peptide also increased the enthalpy of the transition. These peptides also increased the ordering of DMPC below the phase transition as measured with both 5- and 16-doxylstearic acid. The ordering effect was most pronounced with the arginine-containing peptide using the 5-doxylstearic acid probe. The results demonstrate that even the zwitterionic DMPC can interact more strongly with positively charged peptides than with negatively charged ones. In addition, peptide sequence as well as composition is important in determining the nature of peptide-lipid interactions. The markedly different effects of these pentagastrin peptides on the phase transition and motional properties of DMPC occur despite the similar depth of burial of these peptides with DMPC.  相似文献   

11.
Reconstitution of glycophorin into dimyristoyl phosphatidylcholine and sphingomyelin vesicles was sub-maximal below the phase transition temperatures of these lipids. Reconstitution of glycophorin into diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine liposomes was maximal within a range of temperatures below the phase transition temperatures of dimyristoyl phosphatidylcholine and sphingomyelin but above the phase transition temperatures of diisostearoyl phosphatidylcholine and dioleoyl phosphatidylcholine. These findings indicate a greater tendency for reconstitution of glycophorin into fluid as opposed to solid lipid phases.  相似文献   

12.
The structure of cytochrome c bound to anionic lipid membranes composed of dimyristoyl, dipalmitoyl, or dioleoyl phosphatidylglycerols, or of bovine heart cardiolipin, has been investigated by Fourier transform infrared spectroscopy. Only small changes in secondary structure, as registered by the amide I band of cytochrome c, were observed upon binding at temperatures below that of denaturation of the protein, and these were not coupled to the thermotropic phase transitions of the lipid. The denaturation temperature of the protein decreased by approximately 25-30 degrees upon binding, in a progression which correlated with that of the lipid phase transition temperatures, being approximately 7 degrees lower for complexes with dioleoyl than with dipalmitoyl phosphatidylglycerol. Large changes in the amide proton exchange characteristics, as monitored by the spectral shifts in the amide I band of the protein in D2O, were observed on binding cytochrome c to the lipid membranes. For the slowly exchanging population, the amide deuteration rates of the free protein were nearly independent of temperature, whereas those of the bound protein increased by up to two orders of magnitude over the temperature range from 10 to 40 degrees C. In addition, the extent of exchange differed between the bound and unbound protein. A structural transition in the bound protein was detected as a discontinuous step in Arrhenius plots of the deuterium exchange rates which occurred at a temperature in the region of 22 to 29 degrees C, depending on the lipid, far below that of denaturation. The temperature of this transition was determined by the physical state of the lipid, being 7 degrees lower for the lipids in the fluid state than for those in the gel state, and, for complexes with dimyristoyl phosphatidylglycerol, occurred at an intermediate temperature, being controlled by the lipid chain-melting transition at 27-28 degrees C. These results provide evidence for a coupling of the tertiary structure of the membrane-bound protein with the physical state of the membrane lipids.  相似文献   

13.
The effect of lipid phase state on the orientation and conformation of a class A alpha-helical peptide on aligned lipid multilayers was examined using oriented circular dichroism spectroscopy. A comparison of oriented spectra in aligned peptide-lipid multilayers with CD spectra of unaligned peptide lipid vesicle complexes is consistent with a preferential alignment of helices parallel to the membrane surface at temperatures above and below the main acyl-chain melting transition temperature of the phospholipid. Changes are observed in the oriented CD spectra with lipid phase state which are attributed to a subtle conformational change of the peptide on the lipid surface. The results are compared with available experimental data on membrane-active lytic and antimicrobial helical peptides.  相似文献   

14.
Unraveling the conformation of membrane-bound viral fusion peptides is essential for understanding how those peptides destabilize the bilayer topology of lipids that is important for virus-cell membrane fusion. Here, molecular dynamics (MD) simulations were performed to investigate the conformation of the 20 amino acids long fusion peptide of influenza hemagglutinin of strain X31 bound to a dimyristoyl phosphatidylcholine (DMPC) bilayer. The simulations revealed that the peptide adopts a kinked conformation, in agreement with the NMR structures of a related peptide in detergent micelles. The peptide is located at the amphipathic interface between the headgroups and hydrocarbon chains of the lipid by an energetically favorable arrangement: The hydrophobic side chains of the peptides are embedded into the hydrophobic region and the hydrophilic side chains are in the headgroup region. The N-terminus of the peptide is localized close to the amphipathic interface. The molecular dynamics simulations also revealed that the peptide affects the surrounding bilayer structure. The average hydrophobic thickness of the lipid phase close to the N-terminus is reduced in comparison with the average hydrophobic thickness of a pure dimyristoyl phosphatidylcholine bilayer.  相似文献   

15.
Complexes formed between dimyristoylphosphatidylcholine (DMPC) and the peptide pentagastrin or [Arg4]pentagastrin were examined by 31P- and 2H-NMR. The cationic [Arg4]pentagastrin produces larger changes in the lipid NMR spectra than does the anionic pentagastrin. 31P-NMR spectra of DMPC with [Arg4]pentagastrin below the phase transition exhibits two components one of which is motionally restricted compared with the pure lipid. The exchange between these two lipid domains is slow on the millisecond time scale. The interactions between this peptide and phospholipid are diminished above the melting temperature of the complex. The 2H-NMR spectra of DMPC which had been labelled in a choline methylene group is also affected more by the [Arg4]pentagastrin than by pentagastrin. In the presence of [Arg4]pentagastrin, even above the lipid phase transition, an additional doublet with a smaller quadrupole splitting is observed. These results clearly demonstrate the importance of peptide charge in determining the effects of peptides on lipid bilayers.  相似文献   

16.
The effects of an amino acid derivative (N-benzoyl-l-argininamide), four small peptides (Phe-Gly-Phe-Gly, gastrin-related peptide (Trp-Met-Arg-Phe-NH2), tetragastrin (Trp-Met-Asp-Phe-NH2), pentagastrin (Boc-βAla-Trp-Met-Asp-Phe-NH2)) and one medium-sized peptide. glucagon (29 residues), on the gel-to-liquid crystalline transition of a multilamellar suspension of dimyristoylphosphatidylcholine have been studied by means of high-sensitivity differential scanning calorimetry. At low concentrations of added solutes, the temperature at which the excess apparent specific heat in the gel-to-liquid crystalline phase transition of the lipid is maximal is lowered by an amount proportional to the total concentration of the peptide, with proportionality constants ranging from ?0.018 K mM?1 for Phe-Gly-Phe-Gly to ?3.1 K mM?1 for the gastrin-related peptide. The lipid mixtures involving the first two solutes listed above exhibited approximately symmetrical curves of excess apparent specific heat vs. temperature. The curves for the other solutes were asymmetric, and could be well represented as the sum of either two or three two-state curves. The asymmetry, which was especially pronounced in the cases of pentagastrin and glucagon, thus appeared to be due to the presence of components having lower and/or higher transition temperatures than that of the lipid. Pentagastrin and glucagon (R.M. Epand and J.M. Sturtevant, Biochemistry 20 (1981) 4603) have much smaller effects on the gel-to-liquid crystalline phase transition of dipalmitoylphosphatidylcholine than on that of the dimyristoyl analog.  相似文献   

17.
Norleucine is a structural analog of methionine with a methylene group replacing the thio ether. Despite the close structural similarity of these two amino acids, norleucine-containing peptides have markedly different behaviour with phospholipids compared with methionine-containing peptides. For example, HCO-L-Ahx-L-Leu-L-Phe-OMe behaves as a hydrophobic peptide when mixed with dimyristoylphosphatidylcholine. This peptide lowers the enthalpy of the lipid phase transition. The effect is independent of the rate of heating. With the homologous peptide, HCO-L-Met-L-Leu-L-Phe-OMe, the results are markedly dependent on scan rate with a higher enthalpy observed at faster scan rates. Only at a scan rate of 0.2 K min-1 do the two peptides approach similar behaviour. The higher enthalpy observed for samples with the methionine peptide at higher scan rates can be explained assuming that the peptide aggregates at low temperature. As the phase transition temperature is approached, the more hydrophilic methionine peptide partitions more slowly into the membrane than the norleucine peptide. Partitioning of the peptides between aqueous and lipid phases was measured at 37 degrees by centrifuging down the lipid-bound fraction. At a peptide concentration of 15 microM and a lipid concentration of 1.4 mM, 89% of the HCO-L-Ahx-L-Leu-L-PheOMe and 97% of the HCO-L-Met-L-Leu-L-PheOMe remained in the supernate; indicating a greater tendency of the norleucine-containing peptide to partition into the lipid phase. The peptides Ac-L-Phe-L-Met-L-Arg-L-Phe-NH2 and Ac-L-Phe-L-Ahx-L-Arg-L-Phe-NH2 are readily soluble in water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Mixtures of lipids and proteins, the ATPase from rabbit sarcoplasmic reticulum, were studied by freeze-fracture electron microscopy and by measurement of the amount of fluid lipid with the spin label 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). In dimyristoyl phosphatidylcholine vesicles the protein molecules were randomly distributed above the transition temperature, Tt, of the lipid and aggregated below Tt. For mixtures af dimyristoyl and dipalmitoyl phosphatidylcholine the existence of fluid and solid domains was shown in the temperature interval predicted from earlier TEMPO measurements. When protein was incorporated into this lipid mixture, freeze-fracture particles were randomly distributed in fluid lipids, or aggregated when only solid lipids were present.In mixtures of dimyristoyl phosphatidylcholine with cholesterol the protein was distributed randomly above the transition temperature of the phosphatidylcholine. Below that transition temperature the protein was excluded from a banded phase of solid lipid in the case of 10 mol% cholesterol. In mixtures containing 20 mol% cholesterol, protein molecules formed linear arrays, 50–200 nm in length, around smooth patches of lipid.Phase diagrams for lipid/cholesterol and lipid/protein systems are proposed which account for many of the available data. A model for increasing solidification of lipid around protein molecules or cholesterol above the transition temperarture of the lipid is discussed.  相似文献   

19.
The interaction of melittin, a polypeptide consisting of 26 amino acid residues, with dimyristoyl phosphatidylcholine bilayers was investigated by vibrational Raman spectroscopy. Spectral peak height intensity ratios, involving vibrational transitions in both the 3000 cm?1 acyl chain methylene carbon-hydrogen stretching mode region and the 1100 cm?1 acyl chain carbon-carbon skeletal stretching mode interval, served as temperature profile indices for monitoring the bilayer order-disorder processes. For a lipid : melittin molar ratio of 14 : 1 two order-disorder transitions were observed. In comparison to a gel to liquid crystalline phase transition of 22.5°C for the pure lipid, the lower transition, exhibiting a 2°C width, is centered at 17°C and is associated with a depression of the main lipid phase transition of dimyristoyl phosphatidylcholine. The second thermal transition, displaying a 7°C interval, occurs at approx. 29°C and is associated with the melting behavior of approximately seven immobilized boundary lipids which surround the inserted hydrophobic segment of the polypeptide. For a lipid : melittin molar ratio of 10 : 1 two thermal transitions are also observed at 11 and 30°C. As before, they represent, respectively, the main gel to liquid crystalline phase transition and the melting behavior of approximately four boundary lipids attached to melittin. From these data alternative schemes are suggested for disposing the immobilized lipids around the hydrophobic portion of the polypeptide within the bilayer.  相似文献   

20.
In order to examine the necessary structural features for a protein to promote lipid efflux by the ABCA1 transporter, synthetic peptides were tested on ABCA1-transfected cells (ABCA1 cells) and on control cells. L-37pA, an l amino acid peptide that contains two class-A amphipathic helices linked by proline, showed a 4-fold increase in cholesterol and phospholipid efflux from ABCA1 cells compared to control cells. The same peptide synthesized with a mixture of l and d amino acids was less effective than L-37pA in solubilizing dimyristoyl phosphatidyl choline vesicles and in effluxing lipids. In contrast, the 37pA peptide synthesized with all d amino acids (D-37pA) was as effective as L-37pA. Unlike apoA-I, L-37pA and D-37pA were also capable, although at a reduced rate, of causing lipid efflux independent of ABCA1 from control cells, Tangier disease cells, and paraformaldehyde fixed ABCA1 cells. The ability of peptides to bind to cells correlated with their lipid affinity. In summary, the amphipathic helix was found to be a key structural motif for peptide-mediated lipid efflux from ABCA1, but there was no stereoselective requirement. In addition, unlike apoA-I, synthetic peptides can also efflux lipid by a passive, energy-independent pathway that does not involve ABCA1 but does depend upon their lipid affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号