共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell motility and adhesion involves dynamic microtubule (MT) acetylation/deacetylation, a process regulated by enzymes as HDAC6, a major cytoplasmic α-tubulin deacetylase. We identify G protein-coupled receptor kinase 2 (GRK2) as a key novel stimulator of HDAC6. GRK2, which levels inversely correlate with the extent of α-tubulin acetylation in epithelial cells and fibroblasts, directly associates with and phosphorylates HDAC6 to stimulate α-tubulin deacetylase activity. Remarkably, phosphorylation of GRK2 itself at S670 specifically potentiates its ability to regulate HDAC6. GRK2 and HDAC6 colocalize in the lamellipodia of migrating cells, leading to local tubulin deacetylation and enhanced motility. Consistently, cells expressing GRK2-K220R or GRK2-S670A mutants, unable to phosphorylate HDAC6, exhibit highly acetylated cortical MTs and display impaired migration and protrusive activity. Finally, we find that a balanced, GRK2/HDAC6-mediated regulation of tubulin acetylation differentially modulates the early and late stages of cellular spreading. This novel GRK2/HDAC6 functional interaction may have important implications in pathological contexts. 相似文献
3.
Kaluza D Kroll J Gesierich S Yao TP Boon RA Hergenreider E Tjwa M Rössig L Seto E Augustin HG Zeiher AM Dimmeler S Urbich C 《The EMBO journal》2011,30(20):4142-4156
Histone deacetylases (HDACs) deacetylate histones and non-histone proteins, thereby affecting protein activity and gene expression. The regulation and function of the cytoplasmic class IIb HDAC6 in endothelial cells (ECs) is largely unexplored. Here, we demonstrate that HDAC6 is upregulated by hypoxia and is essential for angiogenesis. Silencing of HDAC6 in ECs decreases sprouting and migration in vitro and formation of functional vascular networks in matrigel plugs in vivo. HDAC6 regulates zebrafish vessel formation, and HDAC6-deficient mice showed a reduced formation of perfused vessels in matrigel plugs. Consistently, overexpression of wild-type HDAC6 increases sprouting from spheroids. HDAC6 function requires the catalytic activity but is independent of ubiquitin binding and deacetylation of α-tubulin. Instead, we found that HDAC6 interacts with and deacetylates the actin-remodelling protein cortactin in ECs, which is essential for zebrafish vessel formation and which mediates the angiogenic effect of HDAC6. In summary, we show that HDAC6 is necessary for angiogenesis in vivo and in vitro, involving the interaction and deacetylation of cortactin that regulates EC migration and sprouting. 相似文献
4.
《Cellular signalling》2014,26(2):363-369
The E3 Ubiquitin ligase TRIM50 promotes the formation and clearance of aggresome-associated polyubiquitinated proteins through HDAC6 interaction, a tubulin specific deacetylase that regulates microtubule-dependent aggresome formation. In this report we showed that TRIM50 is a target of HDAC6 with Lys-372 as a critical residue for acetylation. We identified p300 and PCAF as two TRIM50 acetyltransferases and we further showed that a balance between ubiquitination and acetylation regulates TRIM50 degradation. 相似文献
5.
6.
7.
Background
The NAD+-dependent histone deacetylases, known as "sirtuins", participate in a variety of processes critical for single- and multi-cellular life. Recent studies have elucidated the importance of sirtuin activity in development, aging, and disease; yet, underlying mechanistic pathways are not well understood. Specific sirtuins influence chromatin structure and gene expression, but differences in their pathways as they relate to distinct chromatin functions are just beginning to emerge. To further define the range of global chromatin changes dependent on sirtuins, unique biological features of the ciliated protozoan Tetrahymena thermophila can be exploited. This system offers clear spatial and temporal separation of multiple whole genome restructuring events critical for the life cycle.Results
Inhibition with nicotinamide revealed that sirtuin deacetylase activity in Tetrahymena cells promotes chromatin condensation during meiotic prophase, differentiation of heterochromatin from euchromatin during development, and chromatin condensation/degradation during programmed nuclear death. We identified a class I sirtuin, called Thd14, that resides in mitochondria and nucleoli during vegetative growth, and forms a large sub-nuclear aggregate in response to prolonged cell starvation that may be peripherally associated with nucleoli. During sexual conjugation and development Thd14 selectively concentrates in the parental nucleus prior to its apoptotic-like degradation.Conclusions
Sirtuin activity is important for several functionally distinct events requiring global chromatin condensation. Our findings suggest a novel role for sirtuins in promoting programmed pycnosis by acting on chromatin destined for degradation. The sirtuin Thd14, which displays physiological-dependent differential localization within the nucleus, is a candidate for a chromatin condensation enzyme that is coupled to nuclear degradation. 相似文献8.
9.
Cortactin is frequently overexpressed in cancer cells, and changes of the levels of its tyrosine phosphorylation have been observed in several cancer cells. However, how the expression level and phosphorylation state of cortactin would influence the ultimate cellular function of cancer cells is unknown. In this study, we analyzed the role of cortactin in gastric and breast cancer cell lines using RNA interference technique and found that knockdown of cortactin inhibited cell migration in a subset of gastric cancer cells with a lower level of its tyrosine phosphorylation, whereas it greatly enhanced cell migration and increased tyrosine phosphorylation of p130Cas in other subsets of cells with hyperphosphorylated cortactin. Consistent results were obtained when hyperphosphorylation of cortactin was induced in MCF7 breast cancer cells by expressing Fyn tyrosine kinase. Additionally, immunostaining analysis showed that knockdown of hyperphosphorylated cortactin resulted in the recruitment of p130Cas to focal adhesions. These results suggest that cortactin hyperphosphorylation suppresses cell migration possibly through the inhibition of membrane localization and tyrosine phosphorylation of p130Cas. 相似文献
10.
11.
Samant SA Courson DS Sundaresan NR Pillai VB Tan M Zhao Y Shroff SG Rock RS Gupta MP 《The Journal of biological chemistry》2011,286(7):5567-5577
Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the K(m) for the actin-activated ATPase activity of both α- and β-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of α-myosin by 20% and β-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. 相似文献
12.
Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress 下载免费PDF全文
Yi‐Ping Wang Li‐Sha Zhou Yu‐Zheng Zhao Shi‐Wen Wang Lei‐Lei Chen Li‐Xia Liu Zhi‐Qiang Ling Fu‐Jun Hu Yi‐Ping Sun Jing‐Ye Zhang Chen Yang Yi Yang Yue Xiong Kun‐Liang Guan Dan Ye 《The EMBO journal》2014,33(12):1304-1320
Glucose‐6‐phosphate dehydrogenase (G6PD) is a key enzyme in the pentose phosphate pathway (PPP) and plays an essential role in the oxidative stress response by producing NADPH, the main intracellular reductant. G6PD deficiency is the most common human enzyme defect, affecting more than 400 million people worldwide. Here, we show that G6PD is negatively regulated by acetylation on lysine 403 (K403), an evolutionarily conserved residue. The K403 acetylated G6PD is incapable of forming active dimers and displays a complete loss of activity. Knockdown of G6PD sensitizes cells to oxidative stress, and re‐expression of wild‐type G6PD, but not the K403 acetylation mimetic mutant, rescues cells from oxidative injury. Moreover, we show that cells sense extracellular oxidative stimuli to decrease G6PD acetylation in a SIRT2‐dependent manner. The SIRT2‐mediated deacetylation and activation of G6PD stimulates PPP to supply cytosolic NADPH to counteract oxidative damage and protect mouse erythrocytes. We also identified KAT9/ELP3 as a potential acetyltransferase of G6PD. Our study uncovers a previously unknown mechanism by which acetylation negatively regulates G6PD activity to maintain cellular NADPH homeostasis during oxidative stress. 相似文献
13.
Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides 总被引:1,自引:0,他引:1
The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice ( Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10–50°C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30–40°C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40°C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30–40°C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40°C were substantially higher than those grown at 10, 20 and 50°C. Furthermore, the activities of (1→3),(1→4)- β -glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1→3),(1→4)- β -glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30–40°C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of β -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of β -glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides. 相似文献
14.
Hsiang Ho Amelia Soto Hopkin Rubina Kapadia Priya Vasudeva Jonathan Schilling Anand K. Ganesan 《Pigment cell & melanoma research》2013,26(2):218-225
Rho family GTPases regulate diverse processes in human melanoma ranging from tumor formation to metastasis and chemoresistance. In this study, a combination of in vitro and in vivo approaches was utilized to determine whether RHOJ, a CDC42 homologue that regulates melanoma chemoresistance, also controls melanoma migration. Depletion or overexpression of RHOJ altered cellular morphology, implicating a role for RHOJ in modulating actin cytoskeletal dynamics. RHOJ depletion inhibited melanoma cell migration and invasion in vitro and melanoma tumor growth and lymphatic spread in mice. Molecular studies revealed that RHOJ alters actin cytoskeletal dynamics by inducing the phosphorylation of LIMK, cofilin, and p41‐ARC (ARP2/3 complex subunit) in a PAK1‐dependent manner in vitro and in tumor xenografts. Taken together, these observations identify RHOJ as a melanoma linchpin determinant that regulates both actin cytoskeletal dynamics and chemoresistance by activating PAK1. 相似文献
15.
16.
Tohru Ishikawa 《Experimental cell research》2010,316(6):951-26374
During cancer progression, tumor cells eventually invade the surrounding collagen-rich extracellular matrix. Here we show that squamous cell carcinoma cells strongly adhere to Type I collagen substrates but display limited motility and invasion on collagen barriers. Further analysis revealed that in addition to the α2β1 integrin, a second collagen receptor was identified as Syndecan-1 (Sdc1), a cell surface heparan sulfate proteoglycan. We demonstrate that siRNA-mediated depletion of Sdc1 reduced adhesion efficiency to collagen I, whereas knockdown of Sdc4 was without effect. Importantly, silencing Sdc1 expression caused reduced focal adhesion plaque formation and enhanced cell spreading and motility on collagen I substrates, but did not alter cell motility on other ECM substrates. Sdc1 depletion ablated adhesion-induced RhoA activation. In contrast, Rac1 was strongly activated following Sdc1 knockdown, suggesting that Sdc1 may mediate the link between integrin-induced actin remodeling and motility. Taken together, these data substantiate the existence of a co-adhesion receptor system in tumor cells, whereby Sdc1 functions as a key regulator of cell motility and cell invasion by modulating RhoA and Rac activity. Downregulation of Sdc1 expression during carcinoma progression may represent a mechanism by which tumor cells become more invasive and metastatic. 相似文献
17.
18.
19.