首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Watanabe M  Hiraide K  Okada N 《Gene》2007,399(1):46-52
Mutation in the inward rectifier potassium channel gene, kir7.1, was previously identified as being responsible for the broader stripe zebrafish skin pattern mutant, jaguar/obelix. An amino acid substitution in this channel causes a broader stripe pattern than that of wild type zebrafish. In this study we analyzed cichlid homologs of the zebrafish kir7.1 gene. We identified two kinds of homologous genes in cichlids and named them cikir7.1 and cikir7.2. Southern hybridization using cichlid genome revealed that cichlids from the African Great Lakes, South America and Madagascar have two copies of the gene. Cichlids from Sri Lanka, however, showed only one band in this experiment. Database analysis revealed that only one copy of the kir7.1 gene exists in the genomes of the teleosts zebrafish, tetraodon, takifugu, medaka and stickleback. The deduced amino acid sequence of cikir7.1 is highly conserved among African cichlids, whereas that of cikir7.2 has several amino acid substitutions even in conserved transmembrane domains. Gene expression analysis revealed that cikir7.1 is expressed specifically in brain and eye, and cikir7.2 in testis and ovary; zebrafish kir7.1, however, is expressed in brain, eye, skin, caudal fin, testis and ovary. These results suggest that gene duplication of the cichlid kir7.1 occurred in a common ancestor of the family Cichlidae, that the function of parental kir7.1 was then divided into two genes, cikir7.1 and cikir7.2, and that the evolutionary rate of cikir7.2 might have been accelerated, thereby effecting functional diversification in the cichlid lineage. Thus, the evolution of kir7.1 genes in cichlids provides a typical example of gene duplication--one gene is conserved while the other becomes specialized for a novel function.  相似文献   

2.
3.
Phylogenetic analyses supported the hypothesis that the vertebrate toll-like receptors (TLRs) include two very ancient groups that arose by gene duplication prior to the divergence of protostomes and deuterostomes: (1) the TLR1 family (including mammalian TLR1, TLR2, TLR6, and TLR10); and (2) a clade including the remainder of mammalian TLRs. Correlating data on ligand type, subcellular localization, and gene expression in leukocytes and other tissues with the phylogeny provided evidence that certain major functional specializations within the TLRs occurred after ancient gene duplication events and that these traits have been retained through further events of gene duplication. For example, the recognition of bacterial lipoproteins appears to have arisen in the ancestor of the TLR1 family and continues to characterize members of that family whose ligands are known. Likewise, expression on the endosomal membrane and the recognition of nucleic acids appears to have been arisen in the ancestor of the TLR7 family and some related TLRs. On the other hand, gene expression patterns across tissues appear to have been much more volatile over the evolution of the vertebrate TLRs, since genes may show expression profiles similar to those of distantly related genes but dissimilar to those of closely related genes. Thus, the vertebrate TLRs provide an example of a multi-gene family in which gene duplication has been followed by extensive changes in certain aspects of gene function, while others have been conserved throughout vertebrate history. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Gene duplications drive the recruitment of genes for secondary metabolism. Gene copies are gradually modified to create genes with specificities and expression patterns adapted to the needs of the new pathway in which they are involved. Duplicated genes are often in tandem repeats, forming clusters within the plant genome. However, in some cases, clusters of nonhomologous genes have also been identified as forming a functional unit. The selective forces that have caused the establishment of new pathways are far from understood and might have changed repeatedly during evolution owing to the continuously changing environment. Recent data show that the way several classes of secondary compounds are scattered among species is attributable to independent recruitment and the inactivation of biosynthetic enzymes.  相似文献   

5.
The origin of novel gene functions through gene duplication, mutation, and natural selection represents one of the mechanisms by which organisms diversify and one of the possible paths leading to adaptation. Nonetheless, the extent, role, and consequences of duplications in the origins of ecological adaptations, especially in the context of species interactions, remain unclear. To explore the evolution of a gene family that is likely linked to species associations, we investigated the evolutionary history of the A-superfamily of conotoxin genes of predatory marine cone snails (Conus species). Members of this gene family are expressed in the venoms of Conus species and are presumably involved in predator-prey associations because of their utility in prey capture. We recovered sequences of this gene family from genomic DNA of four closely related species of Conus and reconstructed the evolutionary history of these genes. Our study is the first to directly recover conotoxin genes from Conus genomes to investigate the evolution of conotoxin gene families. Our results revealed a phenomenon of rapid and continuous gene turnover that is coupled with heightened rates of evolution. This continuous duplication pattern has not been observed previously, and the rate of gene turnover is at least two times higher than estimates from other multigene families. Conotoxin genes are among the most rapidly evolving protein-coding genes in metazoans, a phenomenon that may be facilitated by extensive gene duplications and have driven changes in conotoxin functions through neofunctionalization. Together these mechanisms led to dramatically divergent arrangements of A-superfamily conotoxin genes among closely related species of Conus. Our findings suggest that extensive and continuous gene duplication facilitates rapid evolution and drastic divergence in venom compositions among species, processes that may be associated with evolutionary responses to predator-prey interactions.  相似文献   

6.
Recent analysis of the complete mosquito Anopheles gambiae genome has revealed a far higher number of opsin genes than for either the Drosophila melanogaster genome or any other known insect. In particular, the analysis revealed an extraordinary opsin gene content expansion, whereby half are long wavelength-sensitive (LW) opsin gene duplicates. We analyzed this genomic data in relationship to other known insect opsins to estimate the relative timing of the LW opsin gene duplications and to identify "missing" paralogs in extant species. The inferred branching patterns of the LW opsin gene family phylogeny indicate at least one early gene duplication within insects before the emergence of the orders Orthoptera, Mantodea, Hymenoptera, Lepidoptera, and Diptera. These data predict the existence of one more LW opsin gene than is currently known from most insects. We tested this prediction by using a degenerate PCR strategy to screen the hymenopteran genome for novel LW opsin genes. We isolated two LW opsin gene sequences from each of five bee species, Bombus impatiens, B. terrestris, Diadasia afflicta, D. rinconis, and Osmia rufa, including 1.1 to 1.2 kb from a known (LW Rh1) and 1 kb from a new opsin gene (LW Rh2). Phylogenetic analysis suggests that the novel hymenopteran gene is orthologous to A. gambiae GPRop7, a gene that is apparently missing from D. melanogaster. Relative rate tests show that LW Rh2 is evolving at a slower rate than LW Rh1 and, therefore, may be a useful marker for higher-level hymenopteran systematics. Site-specific rate tests indicate the presence of several amino acid sites between LW Rh1 and LW Rh2 that have undergone shifts in selective constraints after duplication. These sites and others are discussed in relationship to putative structural and functional differences between the two genes.  相似文献   

7.
8.
B-class MADS-box genes have been shown to be the key regulators of petal and stamen specification in several eudicot model species such as Arabidopsis thaliana, Antirrhinum majus, and Petunia hybrida. Orthologs of these genes have been found across angiosperms and gymnosperms, and it is thought that the basic regulatory function of B proteins is conserved in seed plant lineages. The evolution of B genes is characterized by numerous duplications that might represent key elements fostering the functional diversification of duplicates with a deep impact on their role in the evolution of the floral developmental program. To evaluate this, we performed a rigorous statistical analysis with B gene sequences. Using maximum likelihood and Bayesian methods, we estimated molecular substitution rates and determined the selective regimes operating at each residue of B proteins. We implemented tests that rely on phylogenetic hypotheses and codon substitution models to detect significant differences in substitution rates (DSRs) and sites under positive adaptive selection (PS) in specific lineages before and after duplication events. With these methods, we identified several protein residues fixed by PS shortly after the origin of PISTILLATA-like and APETALA3-like lineages in angiosperms and shortly after the origin of the euAP3-like lineage in core eudicots, the 2 main B gene duplications. The residues inferred to have been fixed by positive selection lie mostly within the K domain of the protein, which is key to promote heterodimerization. Additionally, we used a likelihood method that accommodates DSRs among lineages to estimate duplication dates for AP3-PI and euAP3-TM6, calibrating with data from the fossil record. The dates obtained are consistent with angiosperm origins and diversification of core eudicots. Our results strongly suggest that novel multimer formation with other MADS proteins could have been crucial for the functional divergence of B MADS-box genes. We thus propose a mechanism of functional diversification and persistence of gene duplicates by the appearance of novel multimerization capabilities after duplications. Multimer formation in different combinations of regulatory proteins can be a mechanistic basis for the origin of novel regulatory functions and a gene regulatory mechanism for the appearance of morphological innovations.  相似文献   

9.
Gene duplication is a common evolutionary process that leads to the expansion and functional diversification of protein subfamilies. The evolutionary events that cause paralogous proteins to bind different protein ligands (functionally diverged interfaces) are investigated and compared to paralogous proteins that bind the same protein ligand (functionally preserved interfaces). We find that functionally diverged interfaces possess more subfamily-specific residues than functionally preserved interfaces. These subfamily-specific residues are usually partially buried at the interface rim and achieve specific binding through optimized hydrogen bond geometries. In addition to optimized hydrogen bond geometries, side-chain modeling experiments suggest that steric effects are also important for binding specificity. Residues that are completely buried at the interface hub are also less conserved in functionally diverged interfaces than in functionally preserved interfaces. Consistent with this finding, hub residues contribute less to free energy of binding in functionally diverged interfaces than in functionally preserved interfaces. Therefore, we propose that protein binding is a delicate balance between binding affinity that primarily occurs at the interface hub and binding specificity that primarily occurs at the interface rim.  相似文献   

10.
Identification of genes that control variation in adaptive characters is a prerequisite for understanding the processes that drive sexual and natural selection. Male coloration and female colour perception play important roles in mate choice in the guppy (Poecilia reticulata), a model organism for studies of natural and sexual selection. We examined a potential source for the known variation in colour perception, by analysing genomic and complementary DNA sequences of genes that code for visual pigment proteins. We find high sequence variability, both within and between populations, and expanded copy number for long-wave sensitive (LWS) opsin genes. Alleles with non-synonymous changes that suggest dissimilar spectral tuning properties occur in the same population and even in the same individual, and the high frequency of non-synonymous substitutions argues for diversifying selection acting on these proteins. Therefore, variability in tuning amino acids is partitioned within individuals and populations of the guppy, in contrast to variability for LWS at higher taxonomic levels in cichlids, a second model system for differentiation owing to sexual selection. Since opsin variability parallels the extreme male colour polymorphism within guppy populations, we suggest that mate choice has been a major factor driving the coevolution of opsins and male ornaments in this species.  相似文献   

11.
Gene duplication provides a major source of new genes for evolutionary novelty and ecological adaptation. However, the maintenance of duplicated genes and their relevance to adaptive evolution has long been debated. Insect trehalase (Treh) plays key roles in energy metabolism, growth, and stress recovery. Here, we show that the duplication of Treh in Lepidoptera (butterflies and moths) is linked with their adaptation to various environmental stresses. Generally, two Treh genes are present in insects: Treh1 and Treh2. We report three distinct forms of Treh in lepidopteran insects, where Treh1 was duplicated into two gene clusters (Treh1a and Treh1b). These gene clusters differ in gene expression patterns, enzymatic properties, and subcellular localizations, suggesting that the enzymes probably underwent sub‐ and/or neofunctionalization in the lepidopteran insects. Interestingly, selective pressure analysis provided significant evidence of positive selection on duplicate Treh1b gene in lepidopteran insect lineages. Most positively selected sites were located in the alpha‐helical region, and several sites were close to the trehalose binding and catalytic sites. Subcellular adaptation of duplicate Treh1b driven by positive selection appears to have occurred as a result of selected changes in specific sequences, allowing for rapid reprogramming of duplicated Treh during evolution. Our results suggest that gene duplication of Treh and subsequent functional diversification could increase the survival rate of lepidopteran insects through various regulations of intracellular trehalose levels, facilitating their adaptation to diverse habitats. This study provides evidence regarding the mechanism by which gene family expansion can contribute to species adaptation through gene duplication and subsequent functional diversification.  相似文献   

12.
The mammalian Protocadherin (Pcdh) alpha, beta, and gamma gene clusters encode a large family of cadherin-like transmembrane proteins that are differentially expressed in individual neurons. The 22 isoforms of the Pcdhg gene cluster are diversified into A-, B-, and C-types, and the C-type isoforms differ from all other clustered Pcdhs in sequence and expression. Here, we show that mice lacking the three C-type isoforms are phenotypically indistinguishable from the Pcdhg null mutants, displaying virtually identical cellular and synaptic alterations resulting from neuronal apoptosis. By contrast, mice lacking three A-type isoforms exhibit no detectable phenotypes. Remarkably, however, genetically blocking apoptosis rescues the neonatal lethality of the C-type isoform knockouts, but not that of the Pcdhg null mutants. We conclude that the role of the Pcdhg gene cluster in neuronal survival is primarily, if not specifically, mediated by its C-type isoforms, whereas a separate role essential for postnatal development, likely in neuronal wiring, requires isoform diversity.  相似文献   

13.
The functional diversification of the vertebrate globin gene superfamily provides an especially vivid illustration of the role of gene duplication and whole-genome duplication in promoting evolutionary innovation. For example, key globin proteins that evolved specialized functions in various aspects of oxidative metabolism and oxygen signaling pathways (hemoglobin [Hb], myoglobin [Mb], and cytoglobin [Cygb]) trace their origins to two whole-genome duplication events in the stem lineage of vertebrates. The retention of the proto-Hb and Mb genes in the ancestor of jawed vertebrates permitted a physiological division of labor between the oxygen-carrier function of Hb and the oxygen-storage function of Mb. In the Hb gene lineage, a subsequent tandem gene duplication gave rise to the proto α- and β-globin genes, which permitted the formation of multimeric Hbs composed of unlike subunits (α2β2). The evolution of this heteromeric quaternary structure was central to the emergence of Hb as a specialized oxygen-transport protein because it provided a mechanism for cooperative oxygen-binding and allosteric regulatory control. Subsequent rounds of duplication and divergence have produced diverse repertoires of α- and β-like globin genes that are ontogenetically regulated such that functionally distinct Hb isoforms are expressed during different stages of prenatal development and postnatal life. In the ancestor of jawless fishes, the proto Mb and Hb genes appear to have been secondarily lost, and the Cygb homolog evolved a specialized respiratory function in blood-oxygen transport. Phylogenetic and comparative genomic analyses of the vertebrate globin gene superfamily have revealed numerous instances in which paralogous globins have convergently evolved similar expression patterns and/or similar functional specializations in different organismal lineages.  相似文献   

14.
The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.  相似文献   

15.
Rapid evolution of goat and sheep globin genes following gene duplication   总被引:9,自引:3,他引:9  
Statistical analyses of DNA sequences of globin genes (beta A, beta C, and gamma) from goat and sheep (including new sequence information for the second intron of sheep beta A and gamma, kindly provided by A. Davis and A. W. Nienhuis) indicate that the rates of nonsynonymous substitution in these genes have been greatly accelerated following the gene duplication separating gamma and the ancestor of beta A and beta C and the gene duplication separating beta A and beta C. In both cases the acceleration was apparently due to relaxation of purifying selection (functional constraints) rather than advantageous mutations because acceleration occurred only in less important parts of the beta globin chain. The rates of nonsynonymous substitution in these genes are estimated to be about 2.3 x 10(-9) per site per year, which is three times higher than that for the divergence between human beta and mouse beta major globin genes. Our analyses further suggest that the rate of synonymous substitution in functional genes and the rate of substitution in pseudogenes are approximately equal and are between 2.8 x 10(-9) and 5.0 x 10(-9) and that the rate of substitution in introns is about 3.0 x 10(-9). The divergence time between beta A and beta C and that between gamma and the beta A-beta C pair are about 12 and 30 million years, respectively. The proportion of transition mutations is estimated to be 64%, two times higher than expected under random mutation but considerably lower than the 96% estimated for animal mitochondrial DNA.   相似文献   

16.
17.
Zinc finger genes in mammalian genomes are frequently found to occur in clusters with cluster members appearing in a tandem array on the chromosome. It has been suggested that in situ gene duplication events are primarily responsible for the evolution of such clusters. The problem of inferring the series of duplication events responsible for producing clustered families is different from the standard phylogeny problem. In this paper, we study this inference problem using a graph called duplication model that captures the series of duplication events while taking into account the observed order of the genes on the chromosome. We provide algorithms to reconstruct a duplication model for a given data set. We use our method to hypothesize the series of duplication events that may have produced the ZNF45 family that appears on human chromosome 19.  相似文献   

18.
Sensory systems provide crucial information about an organism's external environment and, thus, are often subject to strong natural selection. Because of the large variation in the intensity and spectral quality of light in aquatic environments, studies of sensory adaptation have focused on the visual systems of fish for over a half a century. Recently, the molecular genetic mechanisms that determine the spectral sensitivity of visual pigments have been characterized in several fishes including zebrafish, guppies, medaka, killifish, bream, and cichlids. The results of these studies suggest that teleost fish have incredibly diverse visual systems. In this paper, we review the role that opsin duplication and differential gene expression have played in the diversification of visual pigments. We compare our findings in cichlids to five other taxonomic groups and highlight the ways that their similarities and differences may provide new insights into the molecular genetic basis of sensory adaptation and diversification.  相似文献   

19.
Chinen A  Hamaoka T  Yamada Y  Kawamura S 《Genetics》2003,163(2):663-675
Zebrafish is becoming a powerful animal model for the study of vision but the genomic organization and variation of its visual opsins have not been fully characterized. We show here that zebrafish has two red (LWS-1 and LWS-2), four green (RH2-1, RH2-2, RH2-3, and RH2-4), and single blue (SWS2) and ultraviolet (SWS1) opsin genes in the genome, among which LWS-2, RH2-2, and RH2-3 are novel. SWS2, LWS-1, and LWS-2 are located in tandem and RH2-1, RH2-2, RH2-3, and RH2-4 form another tandem gene cluster. The peak absorption spectra (lambdamax) of the reconstituted photopigments from the opsin cDNAs differed markedly among them: 558 nm (LWS-1), 548 nm (LWS-2), 467 nm (RH2-1), 476 nm (RH2-2), 488 nm (RH2-3), 505 nm (RH2-4), 355 nm (SWS1), 416 nm (SWS2), and 501 nm (RH1, rod opsin). The quantitative RT-PCR revealed a considerable difference among the opsin genes in the expression level in the retina. The expression of the two red opsin genes and of three green opsin genes, RH2-1, RH2-3, and RH2-4, is significantly lower than that of RH2-2, SWS1, and SWS2. These findings must contribute to our comprehensive understanding of visual capabilities of zebrafish and the evolution of the fish visual system and should become a basis of further studies on expression and developmental regulation of the opsin genes.  相似文献   

20.
Whole-genome duplication has shaped the genomes of extant lineages ranging from unicellular fungi to vertebrates, and its association with several species-rich taxa has fueled interest in its potential as a catalyst for speciation. One well-established model for the evolution of reproductive isolation involves the reciprocal loss of redundant genes at different loci in allopatric populations. Whole-genome duplication simultaneously doubles the entire gene content of an organism, resulting in massive levels of genetic redundancy and potential for reciprocal gene loss that may produce postzygotic reproductive isolation. Following whole-genome duplication, different populations can potentially change or lose gene function at different duplicate loci. If such populations come back into contact any F1 hybrids that are formed may suffer reduced fertility as some of the gametes they produce may not carry a full complement of functional genes. This reduction in hybrid fertility will be directly proportional to the number of divergently resolved loci between the populations. In this work, we demonstrate that initially identical populations of allotetraploid yeast subjected to mutagenesis rapidly evolve postzygotic reproductive isolation, consistent with the divergent loss of function of redundant gene copies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号