首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
肠道微生物是哺乳动物最密集的微生物群落,也是最多样化的微生物群落之一。随着宏基因组学的不断发展,肠道微生物成为热门的研究领域。肠道微生物具有保护和代谢等功能,在胰岛素抵抗和肥胖等疾病中发挥重要作用。本文介绍了肠道微生物及其代谢物通过调节食欲、神经递质合成分泌、炎性反应进而调节肥胖,探讨了肠道微生物的影响因素,展望了肠道微生物对治疗人类肥胖的应用前景。  相似文献   

3.
4.
5.
6.

Objective:

Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin‐resistance and low‐grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet‐induced obesity in rats.

Design and Methods:

Wistar rats were fed with control diet (CD) or high‐fat diet (HF) and either with or without supplemented ABM for 20 weeks.

Results:

HF diet‐induced body weight gain and increased fat mass compared to CD. In addition HF‐fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF‐fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet‐induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM‐treated rats suggesting a decrease in lipid absorption.

Conclusions:

Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system.  相似文献   

7.
Objective: Humans and rodents show large variability in their individual sensitivity to diet‐induced obesity (DIO), which has been associated with differences in intrinsic spontaneous physical activity (SPA). Evidence from genetic and out‐bred rat obesity models shows that higher activity of the orexin peptides results in higher intrinsic SPA and protection against DIO. Based on this, we hypothesized that naturally occurring variation in SPA and orexin signaling is sufficient to drive differences in sensitivity to DIO. Design and Methods: Orexin expression, behavioral responses to orexin‐A, basal energy expenditure and sensitivity to DIO were measured in in non‐manipulated male Sprague‐Dawley rats selected for high and low intrinsic SPA. Results: Male Sprague‐Dawley rats were classified as high‐activity or low‐activity based on differences in intrinsic SPA. High‐activity rats showed higher expression of prepro‐orexin mRNA, higher sensitivity to behavioral effects of orexin injection, higher basal energy expenditure and were more resistant to obesity caused by high‐fat diet consumption than low‐activity rats. Conclusion: Our results define a new model of differential DIO sensitivity, the high‐activity and low‐activity rats, and suggest that naturally occurring variations in intrinsic SPA cause differences in energy expenditure that are mediated by orexin signaling and alter DIO sensitivity.  相似文献   

8.
9.
Dehydrozingerone (DHZ) exerts beneficial effects on human health; however, its mechanism of action remains unclear. Here, we found that DHZ suppressed high‐fat diet‐induced weight gain, lipid accumulation and hyperglycaemia in C57BL/6 mice and increased AMP‐activated protein kinase (AMPK) phosphorylation and stimulated glucose uptake in C2C12 skeletal muscle cells. DHZ activated p38 mitogen‐activated protein kinase (MAPK) signalling in an AMPK‐dependent manner. Inhibiting AMPK or p38 MAPK blocked DHZ‐induced glucose uptake. DHZ increased GLUT4 (major transporter for glucose uptake) expression in skeletal muscle. Glucose clearance and insulin‐induced glucose uptake increased in DHZ‐fed animals, suggesting that DHZ increases systemic insulin sensitivity in vivo. Thus, the beneficial health effects of DHZ could possibly be explained by its ability to activate the AMPK pathway in skeletal muscle.  相似文献   

10.
11.

Background

Obesity is a multifactor disease associated with cardiovascular disorders such as hypertension. Recently, gut microbiota was linked to obesity pathogenesisand shown to influence the host metabolism. Moreover, several factors such as host-genotype and life-style have been shown to modulate gut microbiota composition. Exercise is a well-known agent used for the treatment of numerous pathologies, such as obesity and hypertension; it has recently been demonstrated to shape gut microbiota consortia. Since exercise-altered microbiota could possibly improve the treatment of diseases related to dysfunctional microbiota, this study aimed to examine the effect of controlled exercise training on gut microbial composition in Obese rats (n = 3), non-obese Wistar rats (n = 3) and Spontaneously Hypertensive rats (n = 3). Pyrosequencing of 16S rRNA genes from fecal samples collected before and after exercise training was used for this purpose.

Results

Exercise altered the composition and diversity of gut bacteria at genus level in all rat lineages. Allobaculum (Hypertensive rats), Pseudomonas and Lactobacillus (Obese rats) were shown to be enriched after exercise, while Streptococcus (Wistar rats), Aggregatibacter and Sutturella (Hypertensive rats) were more enhanced before exercise. A significant correlation was seen in the Clostridiaceae and Bacteroidaceae families and Oscillospira and Ruminococcus genera with blood lactate accumulation. Moreover, Wistar and Hypertensive rats were shown to share a similar microbiota composition, as opposed to Obese rats. Finally, Streptococcus alactolyticus, Bifidobacterium animalis, Ruminococcus gnavus, Aggregatibacter pneumotropica and Bifidobacterium pseudolongum were enriched in Obese rats.

Conclusions

These data indicate that non-obese and hypertensive rats harbor a different gut microbiota from obese rats and that exercise training alters gut microbiota from an obese and hypertensive genotype background.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-511) contains supplementary material, which is available to authorized users.  相似文献   

12.
The NAD+‐dependent SIRT6 deacetylase is a therapeutic candidate against the emerging metabolic syndrome epidemic. SIRT6, whose deficiency in mice results in premature aging phenotypes and metabolic defects, was implicated in a calorie restriction response that showed an opposite set of phenotypes from the metabolic syndrome. To explore the role of SIRT6 in metabolic stress, wild type and transgenic (TG) mice overexpressing SIRT6 were fed a high fat diet. In comparison to their wild‐type littermates, SIRT6 TG mice accumulated significantly less visceral fat, LDL‐cholesterol, and triglycerides. TG mice displayed enhanced glucose tolerance along with increased glucose‐stimulated insulin secretion. Gene expression analysis of adipose tissue revealed that the positive effect of SIRT6 overexpression is associated with down regulation of a selective set of peroxisome proliferator‐activated receptor‐responsive genes, and genes associated with lipid storage, such as angiopoietin‐like protein 4, adipocyte fatty acid‐binding protein, and diacylglycerol acyltransferase 1, which were suggested as potential targets for drugs to control metabolic syndrome. These results demonstrate a protective role for SIRT6 against the metabolic consequences of diet‐induced obesity and suggest a potentially beneficial effect of SIRT6 activation on age‐related metabolic diseases.  相似文献   

13.
14.
15.
Cardiac hypertrophy is not only an adaptational state before heart failure but also is an independent risk factor for ischemia, arrhythmia, and sudden death. However, the direct effects of hypercholesterolemia on the myocardium and mechanisms are not completely understood. It has been demonstrated that peroxisome proliferator‐activated receptor‐γ (PPARγ) ligand agonists attenuate cardiac hypertrophy through anti‐inflammatory effects. The present study investigated the effects of PPARγ agonists on hypercholesterolemia‐dependent, renin‐angiotensin‐system‐related cardiac hypertrophy. The findings showed that left ventricular hypertrophy, eminent cardiomyocyte hypertrophy, and lipid deposits in myocardium were observed in the rats fed a cholesterol‐rich diet for 6 months, while these characteristic pathological alterations and the increase in angiotensin II (ANG II) level and over‐expression of angiotensin II type 1 receptor (AT1R) in the left ventricular tissues induced by the cholesterol‐rich diet were significantly suppressed to equal extents by rosiglitazone and irbesartan. In contrast, expression of angiotensin II type 2 receptor (AT2R) was upregulated by these two drugs. In addition, lipid metabolism was markedly improved. The above findings suggest that the cardioprotection of the PPARγ agonist against cardiac hypertrophy evoked by hypercholesterolemia in rats is mediated partially by the improvement of lipid profile, the reduction of ANG II level in the local tissue along with the downregulation of AT1R expression, and upregulation of AT2R expression. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
妊娠期肥胖发生率在世界范围内呈上升趋势,成为影响人类健康的公共卫生问题。肥胖母亲肠道菌群失调导致婴儿早期定植菌群异常,而婴儿早期菌群定植情况与其日后生长发育密切相关,容易导致成年后出现肥胖、胰岛素抵抗、代谢综合征等疾病。因此针对肥胖孕妇肠道菌群分析,以及婴儿肠道菌群及生长发育的分析,对于孕妇孕期管理、健康宣教提高国民整体身体素质具有重要意义。  相似文献   

17.
18.
19.
Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP?/?) mice were analyzed. ClpP?/? mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole‐body energy expenditure and markers of mitochondrial biogenesis are selectively up‐regulated in the white adipose tissue (WAT) of ClpP?/? mice. When challenged with a metabolic stress such as high‐fat diet, despite similar caloric intake, ClpP?/? mice are protected from diet‐induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号