共查询到20条相似文献,搜索用时 15 毫秒
1.
Enkephalin degrading enzymes are present in the electric organ of Torpedo californica 总被引:1,自引:0,他引:1
Two proteolytic activities that degrade [Leu5]enkephalin were found in Torpedo californica electric organ. One is a soluble aminopeptidase that degrades enkephalin at the Tyr1-Gly2 peptide bond, and the second is an endopeptidase that degrades enkephalin at the Gly3-Phe4 peptide bond. The aminopeptidase is inhibited by low concentrations of puromycin and bestatin. More than 60% of the endopeptidase is associated with the particulate fraction and is almost completely inhibited by low concentrations of captopril (SQ 14225) or SQ 20881 (potent inhibitors of angiotensin converting enzyme). Thiorphan and phosphoramidon (potent enkephalinase inhibitors) are much less effective. The pattern of cleavage and inhibition of the particulate endopeptidase thus resembles that of angiotensin converting enzyme. 相似文献
2.
3.
Development of the electromotor system in Torpedo marmorata: Cationic staining of the electric organ
Geoffrey Q. Fox 《Cell and tissue research》1987,250(1):115-123
Summary The electric organs of embryonic Torpedo marmorala have been reacted with three cationic stains to evaluate the appearance and distribution of anionic sites. Ruthenium red, alcian blue and lysozyme were used at different pHs and found to react in a time-related manner to anionic components within the interelectrocyte space. The basal lamina covering the ventral electrocyte surface possesses the greatest number of anionic sites whereas growth cone, presynaptic terminal and glial membranes displayed almost no staining. Since this lamina serves as the exclusive substrate for ingrowing neuntes during synaptogenesis, the results are consistent with the idea that charge distribution on the membrane surface may provide a necessary cue for neurite motility, extension and eventual synaptogenesis. 相似文献
4.
Guy Brochier Maurice Israel Bernard Lesbats 《Biology of the cell / under the auspices of the European Cell Biology Organization》1993,78(3):145-154
Mediatophore is a nerve terminal membrane protein purified from Torpedo electric organ on its ability to translocate acetylcholine upon calcium action. An antiserum able to immunoprecipitate mediatophore activity was used to study the subcellular distribution of this protein. The presynaptic membrane exhibited a strong and discontinuous immunogold labelling, especially at the active zone where ACh is thought to be released. Two antigens were recognized on immunoblots of synaptosomal membranes: the 15-kDa subunit of mediatophore and a 14-kDa membrane protein that has a wide non-neuronal distribution. Antibodies purified from the serum on native mediatophore and monospecific towards the 15-kDa antigen still gave a high presynaptic membrane localized labelling. In addition, a few 14-kDa protein sites were present at the active zone. The Schwann cell finger interposed between the presynaptic membrane and the postsynaptic arch also exhibited the 14-kDa antigen raising the question of a possible interaction of mediatophore with the 14-kDa protein originating from the Schwann cell. 相似文献
5.
Large-Scale Purification of Torpedo Electric Organ Synaptosomes 总被引:2,自引:1,他引:1
M. Israël S. Lazereg B. Lesbats R. Manaranche N. Morel 《Journal of neurochemistry》1985,44(4):1107-1110
Abstract: A procedure for the large-scale purification of Torpedo electric organ synaptosomes is described. The synaptosomal fraction obtained is very pure as judged from biochemical and morphological data. In addition, acetylcholine (ACh) release was demonstrated after KCl depolarization of synaptosomes in the presence of calcium. Two hundred grams of electric organ can be fractionated in a single run, allowing biochemical studies on presynaptic membrane constituents. 相似文献
6.
C. R. Franchina 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1997,181(2):111-119
I recorded the electric organ discharges (EODs) of 331 immature Brachyhypopomus pinnicaudatus 6–88 mm long. Larvae produced head-positive pulses 1.3 ms long at 7 mm (6 days) and added a second, small head-negative phase
at 12 mm. Both phases shortened duration and increased amplitude during growth. Relative to the whole EOD, the negative phase
increased duration until 22 mm and amplitude until 37 mm. Fish above 37 mm produced a “symmetric” EOD like that of adult females.
I stained cleared fish with Sudan black, or fluorescently labeled serial sections with anti-desmin (electric organ) or anti-myosin
(muscle). From day 6 onward, a single electric organ was found at the ventral margin of the hypaxial muscle. Electrocytes
were initially cylindrical, overlapping, and stalk-less, but later shortened along the rostrocaudal axis, separated into rows,
and formed caudal stalks. This differentiation started in the posterior electric organ in 12-mm fish and was complete in the
anterior region of fish with “symmetric” EODs. The lack of a distinct “larval” electric organ in this pulse-type species weakens
the hypothesis that all gymnotiforms develop both a temporary (larval) and a permanent (adult) electric organ.
Accepted: 1 March 1997 相似文献
7.
Robert W. Ledeen Stanley M. Parsons Marie F. Diebler† Michele Sbaschnig-Agler S. Lazereg† 《Journal of neurochemistry》1988,51(5):1465-1469
We have studied the ganglioside content and pattern of synaptic vesicles isolated from the electric organs of two species of Torpedinidae, Torpedo californica and Torpedo marmorata. The ganglioside concentrations were high relative to protein content (77 and 58 micrograms of N-acetylneuraminic acid/mg of protein, respectively), owing to the low protein-to-lipid ratio; however, they were also appreciable in relation to phospholipid (15.6 and 10.0 micrograms of N-acetylneuraminic acid/mg of phospholipid). The fact that a membrane fraction that separated from synaptic vesicles of T. californica on a controlled-pore glass-bead column and constituted the main potential source of contamination in this preparation had a lower ganglioside content and a different TLC pattern than synaptic vesicles indicated the relatively high purity of the latter. Most of the gangliosides from synaptic vesicles of both species migrated on TLC in the vicinity of standards with three or more sialic acids. Synaptosomes from T. marmorata had a higher lipid N-acetylneuraminic acid/phospholipid ratio and a different TLC pattern than synaptic vesicles. Considering these results and other data appearing recently in the literature, we suggest that reexamination of synaptic vesicles from mammalian brain for the possible presence of gangliosides is warranted. 相似文献
8.
Duncan H. Haynes Jeffry Lansman Anne L. Cahill Stephen J. Morris 《生物化学与生物物理学报:生物膜》1979,557(2):340-353
Synaptic vesicles from the Torpedo ray can be induced to aggregate in the presence of Ca2+ and K+ in the 4 mM and 50 mM range, respectively. The reactions are strikingly similar to those of chromaffin granule membranes reported previously (Morris, S.J., Chiu, V.C.K. and Haynes, D.H. (1979) Membrane Biochem. 2, 163–202). The Ca2+-induced reaction includes dimerization and higher order aggregation, and is shown to be due to electrostatic screening interactions and binding to negatively-charged groups on the membrane surface. The K+-induced reaction includes only dimerization and is shown to be due to screening interactions alone.The kinetics of the dimerization reactions were studied using the stopped-flow rapid mixing technique. The Ca2+-induced reaction has a ‘bimolecular’ rate constant of 4.77 · 108 M?1 · s?1 while the value for the K+-induced reaction is 7.05 · 109 M?1 · s?1. These values are close to the limit of diffusion control (8.03 · 109 M?1 · s?1), indicating that no large energy barriers or structural barriers to aggregation exist. Arrhenius plots for the Ca2+-induced aggregation showed a break at 5°C. Above this temperature, the activation energy is low (), consistent with the above. Below this temperature, the activation energy is high, consistent with a membrane structure change increasing the energetic and structural barriers. This information, and the observation of a high stability constant of the complex, were taken as evidence for the involvement of ‘recognition sites’ on the membrane surface. 相似文献
9.
Addition of membrane vesicles prepared from the electric organ of Torpedo californica to the aqueous phase of a planar phospholipid bilayer system results in a large (up to 3 orders of magnitude) stepwise increase in membrane conductance. This increased conductance consists of two components: an ohmic background "leak" and a voltage-dependent, ideally anion-selective conductance. The anion conductance is low at voltages greater than +10 mV, rises sharply as the voltage becomes negative, and then saturates as the voltage becomes highly negative. (The trans side of the bilayer, to which vesicles are not added, is defined as ground.) Under high amplification, the anion conductance shows single channel behavior with a voltage-independent, single channel conductance of 13.9 +/- 0.1 pmho in 0.1 M Cl-. Furthermore, the anion channel, but not the background conductance, is inhibited by submillimolar concentrations of SITS and DIDS, two well known anion transport inhibitors. The inhibition is seen only when SITS or DIDS is added to the cis side. No cholinergic agents tested have any effect on the channel. 相似文献
10.
D. Lorenzo F. Sierra A. Silva O. Macadar 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1990,167(3):447-452
Summary The duration of the electric organ discharge (EOD) in Gymnotus carapo is brief and independent of fish size. Spinal mechanisms involved in electrocyte synchronization were explored by recording spontaneous action potentials of single fibers from the electromotor bulbospinal tract (EBST). Using the field potential of the medullary electromotor nucleus (MEN) as a temporal reference we calculated the orthodromic conduction velocity (CV) of these fibers (range: 10.7–91 m/s).The CVs (in m/s) of fibers recorded at the same level of the spinal cord were significantly different in small and large fish; this difference disappeared when CV were expressed as percentage of body length/ms. Plotting these values against conduction distance (also in %) showed that low CV fibers predominate in the rostral cord while only fast fibers are found at distal levels. Moreover, antidromic stimulation of the distal cord was only effective on high CV fibers. The orthodromic CVs in the distal portion of the recorded fibers were calculated by collision experiments; no significant differences were found between proximal and distal portions.The spatial distribution of CV values within the EBST is proposed to play the main role in synchronizing the electromotoneurons' activity along the spinal cord.Abbreviations
EOD
electric organ discharge
-
EO
electric organ
-
EBST
electromotor bulbospinal tract
-
MEN
medullary electromotor nucleus
-
CV
conduction velocity
-
EMN
electromotoneuron 相似文献
11.
Katrin Hayess Regine Kraft Jana Sachsinger Jürgen Janke Georg Beckmann Klaus Rohde Burkhard Jandrig Rainer Benndorf 《Journal of cellular biochemistry》1998,69(3):304-315
Recently, interest has focused on the human gene encoding the putative protein homologous to VAT-1, the major protein of the synaptic vesicles of the electric organ of the Pacific electric ray Torpedo californica, after it has been localized on chromosome locus 17q21 in a region encompassing the breast cancer gene BRCA1. Chromosomal instability in this region is implicated in inherited predisposition for breast and ovarian cancer. Here we describe isolation and biochemical characterization of a mammalian 48 kDa protein homologous to the VAT-1 protein of Torpedo californica. This VAT-1 homolog was isolated from a murine breast cancer cell line (Ehrlich ascites tumor) and identified by sequencing of cleavage peptides. The isolated VAT-1 homolog protein displays an ATPase activity and exists in two isoforms with isoelectric points of 5.7 and 5.8. cDNA was prepared from Ehrlich ascites tumor cells, and the murine VAT-1 homolog sequence was amplified by polymerase chain reaction and partially sequenced. The known part of the murine and the human translated sequences share 97% identity. By Northern blots, the size of the VAT-1 homolog mRNA in both murine and human (T47D) breast cancer cells was determined to be 2.8 kb. Based on the presented data, a modified gene structure of the human VAT-1 homolog with an extended exon 1 is proposed. VAT-1 and the mammalian VAT-1 homolog form a subgroup within the protein superfamily of medium-chain dehydrogenases/reductases. J. Cell. Biochem. 69:304–315, 1998. © 1998 Wiley-Liss, Inc. 相似文献
12.
D. Lorenzo F. Sierra A. Silva O. Macadar 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1993,173(2):221-226
The pacemaker nucleus of Gymnotus carapo contains two types of neurons: pacemaker cells which set up the frequency of the electric organ discharge (EOD) and relay cells which convey the command signal to the spinal cord. Direct activation of a single relay cell provides enough excitation to discharge a pool of spinal electromotor neurons and electrocytes, generating a small EOD (unit EOD). Different relay cells generate unit EODs of variable size and waveform, indicating the involvement of different groups of electrocytes. A special technique of EOD recording (multiple air-gap) was combined with intracellular stimulation of relay cells to study the spatial distribution within the electric organ (EO) of the command signal arising from different relay cells. Three types of relay cells could be identified: type I commanding the rostral 10% of the EO, type II which distribute their command all along the EO and type III driving the caudal 30%. Waveform analysis of unit EODs indicates that doubly innervated electrocytes which are the most relevant for attaining the specific EOD waveform, receive a favored command from the pacemaker nucleus.Abbreviations CV
conduction velocity
- EMF
electromotive force
- EMN
electromotor neuron
- EO
electric organ
- EOD
electric organ discharge
- PN
pacemaker nucleus
- uEOD
unit electric organ discharge 相似文献
13.
Summary The cycle of synaptic vesicles was studied in isolated nerve terminals and in the electric tissue of Torpedo marmorata. The synaptosomes, as used in this investigation, were a pure cholinergic subcellular fraction that captured dextran particles as an extracellular marker. This endocytotic phenomenon was enhanced by potassium depolarization. Field electrical stimulation (1 Hz and 10 Hz) of the electric organ induced the appearance of membrane foldings into presynaptic terminals. Morphometric studies showed that the number of synaptic vesicles did not decline until after at least 30 min. On the other hand, at 10 Hz these changes were accompanied by an increase in length of the membrane of the terminal. At 15 min of recovery after prolonged stimulation, there was a great increase in density of synaptic vesicles with a large number of vesicles of small diameter. This increase was accompanied by a decrease of membrane length, suggesting that reformation of vesicles is related to retrieval of membrane. Pharmacological stimulation with ouabain produced changes similar to those of long-term electrical stimulation. These changes in membrane were accompanied by a decrease of the population of synaptic vesicles and a wide variation in their diameters. It is concluded that structural changes reported here could not be correlated with kinetics of the transmitter release.We are grateful to Dr. E. Cañadas, Prof. Dr. D. Ribas and Dr. J. Tomás for valuable help and encouragement. We are indebted to Dr. P. Arté and to the staff of the Acuario de Barcelona del Instituto de Investigaciones Pesqueras for providing specimens of Torpedo marmorata. This investigation was supported by a grant Formación Personal Investigador del Ministerio de Universidades e Investigación 相似文献
14.
S. O'Regan 《Journal of neurochemistry》1982,39(3):764-772
Abstract: Little is known about the specificity of the mechanisms involved in the synthesis and release of acetylcholine for the acetyl moiety. To test this, blocks of tissue from the electric organ of Torpedo were incubated with either [1-14 C]acetate or [1-14 C]propionate, and the synthesis, storage, and release of [1-14 C]acetylcholine and [14 C]propionylcholine were compared. To obtain equivalent amounts of the two labeled choline esters, a 50-fold higher concentration of propionate than of acetate was needed. Following subcellular fractionation, similar proportions of [14 C]acetylcholine and [14 C]propionylcholine were recovered with synaptosomes and with synaptic vesicles. Furthermore, both labeled choline esters were protected to a similar extent from degradation during homogenization of tissue in physiological medium, indicating that the two choline esters were equally well incorporated into synaptic vesicles. Yet depolarization of tissue blocks by 50 m M KCI released much less [14 C]propionylcholinc than [14 C]acetylcholine. During field stimulation of the tissue blocks, the difference between the releasibility of the two choline esters was less marked, but acetylcholine was still released in preference to propionylcholine. Evidence for specificity of the release mechanism was also obtained when the release of the two choline esters in response to field stimulation was compared in tissue blocks preincubated with both [3 H]choline and [14 C]propionate. 相似文献
15.
A. Falconi M. Borde A. Hernández-Cruz F. R. Morales 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1995,176(5):679-689
Stimulation of the spinal cord of the electric fish Gymnotus carapo, evoked an abrupt increase in the discharge rate of the electric organ. At the maximum of this response, the rate increased an average of 26 ± 11.8%. The duration of the response was 4.9 ± 2.12 s; its latency was 10.4 ± 1.1 ms. Activation of the Mauthner axon played a decisive role in this phenomenon as indicated by the following: (1) recordings from the axon cap of the Mauthner cell demonstrated that the response was evoked if the Mauthner axon was antidromically activated and (2) a response that was similar to that produced by spinal cord stimulation, was elicited by intracellular stimulation of either Mauthner cell. Stimulation of the eighth nerve could also increase the discharge rate of the electric organ. The effect was greater if a Mauthner cell action potential was elicited. The findings described in the present report, indicate the existence of a functional connection between the Mauthner cell and the electromotor system in Gymnotus carapo. This connection may function to enhance the electrolocative sampling of the environment during Mauthner-cell mediated behaviors. This is a novel function for the Mauthner cell.Abbreviations
EHP
extrinsic hyperpolarizing potential
-
EOD
electric organ discharge
-
M-AIR
Mauthner initiated abrupt increase in rate
-
M-cell
Mauthner cell
-
M-axon
Mauthner axon
-
PM
pacemaker nucleus
-
PM-cell
pacemaker cell
-
PPn
prepacemaker nucleus
-
SPPn
sublemniscal prepacemaker nucleus 相似文献
16.
The asymmetric forms of acetylcholinesterase were purified from the electric organs of the electric rays Narke japonica and Torpedo californica, and their properties were compared. Asymmetric acetylcholinesterase was purified by immunoaffinity chromatography with a monoclonal antibody (Nj-601) to acetylcholinesterase. The MgCl2 extracts of these electric organs were applied to a column of Nj-601-Sepharose, and the bound acetylcholinesterase was eluted by lowering the pH of the eluent to 2.8. The purified asymmetric acetylcholinesterases gave peaks of 17 S (A12) and 13 S (A8) on sucrose density gradients. The enzyme from N. japonica contained more A8 than A12, while that of T. californica contained more A12. After treatment with collagenase, the enzymes gave three peaks on sedimentation; 20 S, 16 S and 11 S for N. japonica, and 19 S, 15 S and 11 S for T. californica, indicating the presence of collagen-like tails. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the asymmetric acetylcholinesterase from N. japonica gave bands of Mr 140 000, 100 000, 70 000 and 60 000, while that from T. californica gave bands of Mr 140 000, 100 000, 70 000 and 55 000. The bands of Mr 70 000 and 140 000 were monomers and non-reducible dimers, respectively, of the catalytic subunits. The bands of Mr 60 000 and 55 000 were the tail subunits, since collagenase treatment of the purified enzymes markedly decreased the amounts of these components. The Mr 100 000 subunit constituted less than 3% of the total asymmetric acetylcholinesterase from N. japonica but 18% of that from T. californica. The tail subunits constituted 6-8% of the two preparations. The catalytic subunits and the Mr 100 000 subunits bound concanavalin A, indicating that they are glycoproteins. The amino acid compositions of the enzymes from N. japonica and T. californica were very similar. Both contained hydroxyproline and hydroxylysine, characteristic of the collagen-like tails. The enzyme required divalent metal ions for activity, but only Mn2+, Mg2+ and Ca2+ were effective. Mn2+ was effective at the lowest concentrations, while Mg2+ gave the highest activity. 相似文献
17.
Abstract: Cholinergic synaptosomes isolated from the electric organ of Torpedo contain membrane-bound adenylate cyclase activity (∼6 pmol/mg proteidmin), which is dependent on the presence of guanine nucleotides. The activity is strongly dependent on temperature and only slightly affected by NaCl. The Torpedo adenylate cyclase is completely inhibited by low levels of free Ca2+ (K0 ∼ 0.5 μ M ). This effect is not altered by either trifluoperazine or addition of exogenous calmodulin. Ca3+ has no effect on the activation step of the adenylate cyclase by guanyl-5'-yl imidodiphosphate (GppNHp), and Mn2+ abolishes the Ca2+ -dependent inhibition of cyclic AMP synthesis. These findings suggest that Ca2+ exerts its effect by direct interaction with a site located on the catalytic subunit. Torpedo synaptosomes contain presynaptic inhibitory muscarinic receptors. The binding of muscarinic agonists to the receptors is modulated (to lower affinity) by GTP. However, muscarinic ligands, examined under a variety of assay conditions, have no effect on adenylate cyclase activity. These results suggest that although both the muscarinic receptor and the adenylate cyclase are coupled to G proteins, they either interact with different G proteins or are situated in different regions of the presynaptic membrane. 相似文献
18.
Harold H. Zakon Peter Thomas Hong-Young Yan 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1991,169(4):493-499
1. Sternopygus macrurus were collected in Venezuela during the period of gonadal recrudescence in early or late dry season. Electric organ discharge (EOD) frequencies were recorded, blood samples were taken for analysis of steroid titers, and gonads were taken for determination of reproductive condition. 2. Mean EOD frequencies were significantly lower in males than in females in all samples. EOD frequency was inversely correlated with body length in males in late, but not early, dry season, and these parameters were never correlated in females. 3. Plasma levels of testosterone (T) and 11-ketotestosterone (11-KT), but not estradiol-17 beta (E2), were inversely correlated with EOD frequency in males. No 11-KT was observed in plasma of females, and plasma levels of T and E2 in females were comparable to those of males. Neither T nor E2 were correlated with EOD frequency in females. 4. Testes collected in late dry season were more mature than those from early dry season; androgen levels and EOD frequency were correlated with testicular maturity. Ovaries collected in early dry season were immature, while those from late dry season were more mature. There was no relationship between EOD frequency and stage of ovarian development. 5. These results suggest that plasma androgens modulate EOD frequency in males during the reproductive season and that plasma E2 has little relationship to EOD frequency in either sex. 相似文献
19.
Role of Creatine Phosphate in the Discharge of the Electric Organ of Torpedo marmorata 总被引:1,自引:0,他引:1
E. Borroni 《Journal of neurochemistry》1984,43(3):795-798
Abstract: The role of creatine phosphate and adenosine triphosphate, as high energy phosphate sources, has been investigated during the discharge and recovery of the electric organ of Torpedo. ATP serves as the immediate source of energy for the biochemical process supporting the electrical activity of the electric organ. Under repetitive stimulation, when the energy demands exceed production, ATP levels are maintained constant at the expense of creatine phosphate. Only when the reservoir of creatine phosphate is depleted do the levels of ATP decrease, and this point corresponds to the state of maximal fatigue of the electric organ. Recovery studies show that the electric organ rapidly recovers the capacity to respond to single pulse stimuli. This recovery is statistically related to the recovery of the levels of ATP and acetylcholine. However, in this phase, the fatiguability of the electric organ is very high since its energy reservoir is still depleted. The complete recovery of the electric organ requires several hours and is closely related to the restoration of the levels of creatine phosphate. 相似文献
20.
《Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology》1996,1292(2):293-302
At least two distinguishable forms of synaptic vesicles exist, the active and reserve, but the reserve form is studied most because it has been difficult to purify the active vesicles. In the work reported here the active vesicles (termed VP2) were highly enriched from the electric organ of Torpedo californica by an improved method developed for the reserve vesicles (termed VP1) with the addition of density gradient centrifugation based on Percoll. No significant differences between the vesicular types were found in the amounts of SV1, SV2, and SV4 epitopes and P-type and V-type ATPase activities. The buoyant densities (g/ml) of VP1 and VP2 vesicles were determined by centrifugation in isosmotic sucrose (1.051, 1.069), Percoll (1.034, 1.040), and glycerol (1.087, 1.090) gradients. The radii were determined by dynamic quasi-elastic laser light-scattering to be (56.6 ± 10.8) nm and (55.0 ± 12.7) nm. For both vesicular types the volume of excluded sucrose is only about 37% of the volume of excluded Percoll, indicating that the surfaces are rough. Approx. 51% of the VP1 and 32% of the VP2 vesicular volumes are ‘osmotically active’ water that is exchangeable with glycerol. The different buoyant densities and amounts of osmotically active water in VP1 and VP2 vesicles probably are due to the different internal solutes. Previously observed differences in acetylcholine active transport and vesamicol binding by VP1 and VP2 synaptic vesicles cannot be explained by major alterations in the protein composition or conformation of the membranes in the two types of vesicles. 相似文献