首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repair replication of DNA has been studied in first instar larvae of Drosophila melanogaster with isopycnic centrifugation techniques. Larvae were fed BUdR, FUdR, streptomycin, penicillin, and Fungazone for two to four hours prior to exposure to UV, X-rays, MMS, or EMS. Feeding was continued for four hours in the presence of (3)HBUdR and DNA was isolated from whole larvae. Repair replication is stimulated by each of these agents. MMS is about 10 times as potent as EMS in stimulating repair synthesis. A dose of 200 ergs/mm(2) largely saturates the level of repair replication observed after UV irradiation. Repair replication rises between 0 and 80,000 R of X-rays before falling off. Semiconservative synthesis is seriously inhibited above a dose of 40,000 R of X-rays. Photorepair has been detected as a reduction in repair synthesis resulting from post-irradiation exposure to photoreactivating light. The same treatment has no detectable effect on X-ray-stimulated repair replication. Repair replication is insensitive to the presence of caffeine or hydroxyurea during the final incubation, although semiconservative synthesis is strongly inhibited by these agents. A mixture of BUdR and (3)HTdR can be used to replace (3)HBUdR in detecting repair replication.  相似文献   

2.
The introduction of single-strand breaks into the DNA of a murine lymphoma (L5178Y) cell treated in vivo with methyl methanesulphonate (MMS) and the behaviour of these breaks on post-treatment incubation were studied. A large proportion of single-strand breaks present after MMS treatment could be repaired as shown by sedimentation in alkaline sucrose. Two inhibitors of DNA synthesis, hydroxyurea and cytosine arabinoside affected the repair process differently-hydroxyurea had only a small effect while cytosine arabinoside blocked repair and at some doses allowed further degradation of the DNA. It was also found that the level of ‘repair replication’ in the presence of cytosine arabinoside was lower than that found in the presence of hydroxyurea.  相似文献   

3.
We examined the possible role of calmodulin in the excision repair of ultraviolet light-induced pyrimidine dimers in damaged DNA by means of specialized assay systems. These assays included bromodeoxyuridine photolysis, dimer chromatography and cytosine arabinoside incorporation in conjunction with hydroxyurea. The calmodulin antagonist, trifluoperazine, and the calcium-chelating agent, EGTA, were employed to ascertain what affect calmodulin played in the repair process. Normal human fibroblast cells were used in all studies described in this report. After exposure to 10 J/m2 of 254 nm light, we observed a decrease of about 30% in the number of single-strand breaks produced in the presence of 25 microM trifluoperazine (1.9 vs. 3.3) in controls although the numbers of bases re-inserted in the repaired regions were similar (64 vs. 72). Measurement of thymine-containing dimers remaining throughout a 24 h time period indicated a 30% difference in the excision of dimers when tested with either EGTA or trifluoperazine. We also observed a significant decrease in the number of cytosine arabinoside arrested repair sites in the presence of either EGTA or trifluoperazine. The results are discussed with relation to the possibility of calmodulin altering the initial incision by repair endonuclease.  相似文献   

4.
Excision repair of ultraviolet damage in human fibroblasts was partially inhibited by drugs that block DNA polymerases alpha or beta (cytosine arabinoside, aphidicolin and dideoxythymidine) causing a reduction in unscheduled synthesis and an accumulation of single-strand breaks. The strand breaks accumulated in the presence of aphidicolin could be resealed within 30 min after removal of the drug, but those accumulated by cytosine arabinoside took many hours. Digestion of repaired DNA with exonuclease III or S1 nuclease revealed that even the highest concentration of polymerase inhibitors, singly or in combination, that produced maximal accumulation of single-strand breaks only blocked 37-86% of repair sites. Use of single-strand break frequencies to measure the number of repair events can therefore be in error by as much as a factor of 3. The blocked patches with free 3'OH termini were, on average, 22% of normal length, corresponding to between 6 and 17 bases (assuming a normal patch of 25-75 bases in length). Patches that remained unsealed in vivo were also resistant to sealing by T4 ligase in vitro. The data are more consistent with a mechanism of repair in which long single-strand gaps are first made by excision enzymes and subsequently filled in by DNA polymerase alpha. Strand displacement or nick translation mechanisms seem unlikely.  相似文献   

5.
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene (N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.  相似文献   

6.
R Wu  J L Wu    Y C Yeh 《Journal of virology》1975,16(1):5-16
Nonsense mutants in gene 59 (amC5, amHL628) were used to study the role of this gene in the repair of UV-damaged and alkylated DNA of bacteriophage T4 in vivo. The higher sensitivity to UV irradiation and alkylation of gene 59 mutants after exposure to these agents was established by a comparison of the survival fractions with wild type. Zonal centrifugal analysis of both parental and nascent mutant intracellular DNA molecules after UV irradiation showed that immediately after exposure the size of single-stranded DNA fragments was the same as the wild-type intracellular DNA. However, the capability of rejoining fragmented intracellular DNA was greatly reduced in the mutant. In contrast, the wild-type-infected cells under the same condition resumed DNA replication and repaired its DNA to normal size. Methyl methanesulfonate induced more randomly fragmented intracellular DNA, when compared to UV irradiation. The rate of rejoining under these conditions as judged from their sedimentation profiles was also greatly reduced in mutant-infected cells. Further evidence is presented that UV repair is not a simple consequence of arrested DNA replication, which is a phenotype of the mutant when infected in a nonpermissive host, Escherichia coli B (su minus), but rather that the DNA repair function of gene 59 is independent of the replication function. These and other data presented indicate that a product(s) of gene 59 is essential for both repair of UV lesions and repair of alkylation damage of DNA in vivo. It is suggested that gene 59 may have two functions during viral development: DNA replication and replication repair of DNA molecules.  相似文献   

7.
The in vivo repair processes of Alteromonas espejiana, the host for bacteriophage PM2, were characterized, and UV- and methyl methanesulfonate (MMS)-sensitive mutants were isolated. Wild-type A. espejiana cells were capable of photoreactivation, excision, recombination, and inducible repair. There was no detectable pyrimidine dimer-DNA N-glycosylase activity, and pyrimidine dimer removal appeared to occur by a pathway analogous to the Escherichia coli Uvr pathway. The UV- and MMS-sensitive mutants of A. espejiana included three groups, each containing at least one mutation involved with excision, recombination, or inducible repair. One group that was UV sensitive but not sensitive to MMS or X rays showed a decreased ability to excise pyrimidine dimers. Mutants in this group were also sensitive to psoralen plus near-UV light and were phenotypically analogous to the E. coli uvr mutants. A second group was UV and MMS sensitive but not sensitive to X rays and appeared to contain mutations in a gene(s) involved in recombination repair. These recombination-deficient mutants differed from the E. coli rec mutants, which are MMS and X-ray sensitive. The third group of A. espejiana mutants was sensitive to UV, MMS, and X rays. These mutants were recombination deficient, lacked inducible repair, and were phenotypically similar to E. coli recA mutants.  相似文献   

8.
The reaction of cytosine and 5-hydroxymethyl-cytosine (OHMeCyt) with a variety of monofunctional alkylating agents has been investigated to evaluate further the possible role of cytosine alkylation in mutagenesis and the possibility that the immunity of T-even phages to mutation by methyl methanesulphonate (MMS) was due to the unreactivity of OHMeCyt towards this agent. Both cytosine and OHMeCyt reacted equally well with the methylating agents MMS and N-methyl-N-nitrosourea (MNU) affording 6% and less than 1% respectively of the 3-substituted derivative. No product was isolated following subjection of the bases to reaction with ethyl methane-sulphonate (EMS), N-ethyl-N-nitrosourea (ENU) or iso-propyl methane-sulphonate (iPMS).  相似文献   

9.
Li H  Chang TW  Tsai YC  Chu SF  Wu YY  Tzang BS  Liao CB  Liu YC 《Mutation research》2005,588(2):118-128
In our previous study, we found that colcemid, an inhibitor of mitotic spindle, promotes UVC-induced apoptosis in Chinese hamster ovary cells (CHO.K1). In this study, a brief treatment of colcemid on cells after but not before UV irradiation could synergistically reduce the cell viability. Although colcemid did not affect the excision of UV-induced DNA damages such as [6-4] photoproducts or cyclobutane pyrimidine dimers, colcemid accumulated the DNA breaks when it was added to cells following UV-irradiation. This colcemid effect required nucleotide excision repair (NER) since the same accumulation of DNA breaks was barely or not detected in two NER defective strains of CHO cells, UV5 or UV24. Furthermore, the colcemid effect was not due to semi-conservative DNA replication or mitosis since the colcemid-caused accumulation of DNA breaks was also seen in non-replicating cells. Moreover, colcemid inhibited rejoining of DNA breaks accumulated by hydroxyurea/cytosine arabinoside following UV irradiation. Nevertheless, colcemid did not affect the unscheduled DNA synthesis as assayed by the incorporation of bromodeoxyuridine. Taken together, our results suggest that colcemid might inhibit the step of ligation of NER pathways.  相似文献   

10.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

11.
Because of its characteristics, the comet assay has been used to evaluate the ability of virtually any type of eukaryotic cell to repair different kinds of DNA damage, including double and single strand breaks and base damage. The ability to detect excision repair sites using the alkaline version can be enhanced by the inclusion of repair inhibitors, DNA synthesis inhibitors, or chain terminators. In this sense, we evaluated the ability of hydroxyurea (HU) and cytosine arabinoside (Ara-C), for detecting lesions produced by the alkylating agents ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS) in three different cell systems. Two hundred cells for experimental point were analyzed in the alkaline version of the comet assay, and the results are evidences of the utility of the assay to detect alkylation of bases in the cells lines MRC-5 and TK-6, as the treatment with HU +Ara-C significantly increases both the basal and induced frequency of DNA damage. The use of whole blood, although it detected the effects of MMS, with and without repair inhibitors, failed to detect the effect of the selected dose of EMS and does not permit detection increases in the background level.  相似文献   

12.
Ino80 is an evolutionarily conserved member of the SWI2/SNF2-family of ATPases in Saccharomyces cerevisiae. It resides in a multiprotein helicase/chromatin remodeling complex, and has been shown to play a key role in the stability of replication forks during replication stress. Though yeast with defects in ino80 show sensitivity to killing by a variety of DNA-damaging agents, a role for the INO80 protein complex in the repair of DNA has only been assessed for double-strand breaks, and the results are contradictory and inconclusive. We report that ino80Δ cells are hypersensitive to DNA base lesions induced by ultraviolet (UV) radiation and methyl methanesulfonate (MMS), but show little (or no) increased sensitivity to the DNA double-strand break (DSB)-inducing agents ionizing radiation and camptothecin. Importantly, ino80Δ cells display efficient removal of UV-induced cyclobutane pyrimidine dimers, and show a normal rate of removal of DNA methylation damage after MMS exposure. In addition, ino80Δ cells have an overall normal rate of repair of DSBs induced by ionizing radiation. Altogether, our data support a model of INO80 as an important suppressor of genome instability in yeast involved in DNA damage tolerance through a role in stability and recovery of broken replication forks, but not in the repair of lesions leading to such events. This conclusion is in contrast to strong evidence for the DNA repair-promoting role of the corresponding INO80 complexes in higher eukaryotes. Thus, our results provide insight into the specialized roles of the INO80 subunits and the differential needs of different species for chromatin remodeling complexes in genome maintenance.  相似文献   

13.
Benzyl chloride (BC) and 4-chloromethylbiphenyl (4CMB) induce a class of alkaline-stable DNA damage in human cells which, like UV-induced pyrimidine dimers, undergoes repair at a slow rate by an excision-repair pathway which can be inhibited by cytosine arabinoside (araC). In the present study, in an attempt to clarify whether BC and 4CMB are UV-like agents, the excision-deficient xeroderma pigmentosum complementation group A fibroblasts and excision-proficient human alveolar tumour cells (A549) were exposed to various doses of these compounds prior to monitoring the inhibition of cell growth, DNA damage and DNA repair. The data indicate that such XP fibroblasts repair BC- and 4CMB-induced DNA damage at a normal rate, which suggests that the alkaline-stable DNA adducts induced by these chloromethyl compounds and the UV-induced pyrimidine dimers are processed by distinct excision-repair mechanisms in human cells.  相似文献   

14.
The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.  相似文献   

15.
In seven human melanoma cell lines and one human fibroblast strain some correlation of resistance to cell killing was found with two bifunctional alkylating agents (melphalan, chlorambucil) and three monofunctional agents (4(5)-(3,3-dimethyl-l-triazeno)imidazole-5(4)-carboxamide (DTIC), methylmethane sulphonate (MMS) and N-methyl-N1-nitro-N-nitrosoguanidine (MNNG), but little cross-resistance was found between these two groups of agents or with cytosine arabinoside (ara-C). In contrast to previous studies with rodent tumours, potentially synergistic (chloroquine, arginine) or antagonistic (ascorbic acid, leucine) compounds did not affect the toxicity of melphalan in a human melanoma cell line. In two melanoma lines DTIC induced patterns of DNA damage (inhibition of semi-conservative synthesis) and repair (strand breaks and repair synthesis) similar to, but not identical with, those induced by the methylating agent MMNG. These results suggest that a methylating species is derived from DTIC but has a different reactivity toward DNA compared with MNNG.  相似文献   

16.
The antibiotic novobiocin is shown to alter the sedimentation properties of human cellular DNA in alkaline sucrose. This alteration is at least partially due to increased DNA-protein binding in the cell in the presence of novobiocin. Pyrimidine dimer analysis and repair replication studies support previous reports that novobiocin inhibits repair of UV damage in human cells but we find this block to be shortlived. It is also shown that novobiocin is ineffective at blocking "long-patch" repair induced by methyl methanesulfonate as measured both by CsCl density centrifugation and the ara-C inhibition technique. However, the accumulation of breaks in MMS-treated cellular DNA in the presence of novobiocin suggests that some "short-patch" alkylation repair may be inhibited by the antibiotic. These findings are discussed in light of the proposal that novobiocin may inhibit a DNA gyrase-like activity in human as in bacterial cells.  相似文献   

17.
DNA Repair in Potorous tridactylus   总被引:4,自引:0,他引:4       下载免费PDF全文
The DNA synthesized shortly after ultraviolet (UV) irradiation of Potorous tridactylis (PtK) cells sediments more slowly in alkali than that made by nonirradiated cells. The size of the single-strand segments is approximately equal to the average distance between 1 or 2 cyclobutyl pyrimidine dimers in the parental DNA. These data support the notion that dimers are the photoproducts which interrupt normal DNA replication. Upon incubation of irradiated cells the small segments are enlarged to form high molecular weight DNA as in nonirradiated cells. DNA synthesized at long times (~ 24 h) after irradiation is made in segments approximately equal to those synthesized by nonirradiated cells, although only 10-15% of the dimers have been removed by excision repair. These data imply that dimers are not the lesions which initially interrupt normal DNA replication in irradiated cells. In an attempt to resolve these conflicting interpretations, PtK cells were exposed to photoreactivating light after irradiation and before pulse-labeling, since photoreactivation repair is specific for only one type of UV lesion. After 1 h of exposure ~ 35% of the pyrimidine dimers have been monomerized, and the reduction in the percentage of dimers correlates with an increased size for the DNA synthesized by irradiated cells. Therefore, we conclude that the dimers are the lesions which initially interrupt DNA replication in irradiated PtK cells. The monomerization of pyrimidine dimers correlates with a disappearance of repair endonuclease-sensitive sites, as measured in vivo immediately after 1 h of photoreactivation, indicating that some of the sites sensitive to the repair endonuclease (from Micrococcus luteus) are pyrimidine dimers. However, at 24 h after irradiation and 1 h of photoreactivation there are no endonuclease-sensitive sites, even though ~ 50% of the pyrimidine dimers remain in the DNA. These data indicate that not all pyrimidine dimers are accessible to the repair endonuclease. The observation that at long times after irradiation DNA is made in segments equal to those synthesized by nonirradiated cells although only a small percentage of the dimers have been removed suggests that an additional repair system alters dimers so that they no longer interrupt DNA replication.  相似文献   

18.
In our previous study, we found that colcemid, an inhibitor of mitotic spindle, promotes UVC-induced apoptosis in Chinese hamster ovary cells (CHO.K1). In this study, a brief treatment of colcemid on cells after but not before UV irradiation could synergistically reduce the cell viability. Although colcemid did not affect the excision of UV-induced DNA damages such as [6–4] photoproducts or cyclobutane pyrimidine dimers, colcemid accumulated the DNA breaks when it was added to cells following UV-irradiation. This colcemid effect required nucleotide excision repair (NER) since the same accumulation of DNA breaks was barely or not detected in two NER defective strains of CHO cells, UV5 or UV24. Furthermore, the colcemid effect was not due to semi-conservative DNA replication or mitosis since the colcemid-caused accumulation of DNA breaks was also seen in non-replicating cells. Moreover, colcemid inhibited rejoining of DNA breaks accumulated by hydroxyurea/cytosine arabinoside following UV irradiation. Nevertheless, colcemid did not affect the unscheduled DNA synthesis as assayed by the incorporation of bromodeoxyuridine. Taken together, our results suggest that colcemid might inhibit the step of ligation of NER pathways.  相似文献   

19.
We studied DNA repair by injecting plasmids containing random pyrimidine dimers into Xenopus oocytes. We demonstrated excision repair by recovering plasmids and analyzing them with T4 UV endonuclease treatment and alkaline agarose gel electrophoresis. The mechanism for excision repair of these plasmids appears to be processive, rather than distributive, since repair occurs in 'all or none' fashion. At less than 4-5 dimers/plasmid, nearly all repair occurs within 4-6 hours (approximately 10(10) dimers repaired per oocyte); the oocyte, therefore, has abundant repair activity. Specific antibodies and inhibitors were used to determine enzymes involved in repair. We conclude that DNA polymerase alpha (and/or delta) is required because repair is inhibited by antibodies to human DNA polymerase alpha, as well as by aphidicolin, an inhibitor of polymerases alpha (and/or delta). Repair was not inhibited by hydroxyurea, cytosine beta-D-arabinofuranoside, or inhibitors of topoisomerase II (novobiocin). Oocyte repair does not activate semi-conservative DNA replication, nor is protein synthesis required. Photoreactivation cannot account for repair because dimer removal is independent of exogenous light.  相似文献   

20.
In this communication we describe the rapid increase in cellular deoxynucleoside triphosphate (dNTP) concentrations in Chinese Hamster cell line V79 after exposure to known mutagens. With this cell line an expansion of dATP and dTTP pools was detected; changes in dCTP were not large; changes in dGTP were either not significant or too low to quantitate. This situation may reflect the existence of imbalances in dNTP pools at the DNA replication fork. The expansion of dATP and dTTP pools occurred within 2 to 4 hours after exposure of cultured cells to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Ultraviolet light (UV), mitomycin C, and cytosine arabinoside also caused similar dNTP pool changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号