首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The life cycle of Acanthamoeba consists of two stages, trophozoite and cyst. The cyst form is resistant to almost all antibiotics. By long term cultivation, Acanthamoeba severely attenuated the encysting ability. To determine the changing of gene expression by the long term cultivation, especially focusing an encystation mediating factors, this study compared the ESTs of the fresh strain and the old strain, and trophozoite. Comparison of the KOG (euKaryotic Orthologous Groups) analysis relative to trophozoite revealed higher percentages of cyst ESTs related to G (Carbohydrate transport and metabolism), H (Coenzyme transport and metabolism), I (Lipid transport and metabolism), D (Cell cycle control, cell division, chromosome partitioning), T (signal transduction mechanisms), and O (Posttranslational modification, protein turnover, chaperones). In addition to this result, KOG analysis of fresh strain relative to old strain showed higher percentage of cyst ESTs related to metabolism category and T (signal transduction mechanisms) article. ESTs of the fresh strain revealed more various gene profiles compared to the old strain including encystation mediating factors like autophagy related proteins (Z article) and signal transduction proteins (T article). Twenty seven kinds of protein kinase C (PKC) like genes were detected in cyst or trophozoite ESTs and twenty one of them were highly expressed during encystation. The information of the expressed genes during encystation in only the fresh strain will provide new clues to understanding the encystation mechanism of encysting protozoa including Acanthamoeba.  相似文献   

2.
3.
4.
Jiráková K  Kulda J  Nohýnková E 《Protist》2012,163(3):465-479
Differentiation into infectious cysts (encystation) and multiplication of pathogenic trophozoites after hatching from the cyst (excystation) are fundamental processes in the life cycle of the human intestinal parasite Giardia intestinalis. During encystation, a bi-nucleated trophozoite transforms to a dormant tetra-nucleated cyst enveloped by a protective cyst wall. Nuclear division during encystation is not followed by cytokinesis. In contrast to the well-studied mechanism of cyst wall formation, information on nuclei behavior is incomplete and basic cytological data are lacking. Here we present evidence that (1) the nuclei divide by semi-open mitosis during early encystment; (2) the daughter nuclei coming from different parent nuclei are always arranged in pairs; (3) in both pairs, the nuclei are interconnected via bridges formed by fusion of their nuclear envelopes; (4) each interconnected nuclear pair is associated with one basal body tetrad of the undivided diplomonad mastigont; and (5) the interconnection between nuclei persists through the cyst stage being a characteristic feature of encysted Giardia. Based on the presented results, a model of nuclei behavior during Giardia differentiation is proposed.  相似文献   

5.
Acanthamoeba castellanii is a pathogenic free-living amoeba. Cyst forms are particularly important in their pathogenicity, as they are more resistant to treatments and might protect pathogenic intracellular bacteria. However, encystation is poorly understood at the molecular level and global changes at the protein level have not been completely described. In this study, we performed two-dimensional gel electrophoresis to compare protein expression in trophozoite and cyst forms. Four proteins, specifically expressed in trophozoites, and four proteins, specifically expressed in cysts, were identified. Two proteins, enolase and fructose bisphosphate aldolase, are involved in the glycolytic pathway. Three proteins are likely actin-binding proteins, which is consistent with the dramatic morphological modifications of the cells during encystation. One protein belongs to the serine protease family and has been already linked to encystation in A. castellanii. In conclusion, this study found that the proteins whose expression was modified during encystation were likely involved in actin dynamics, glycolysis, and proteolysis.  相似文献   

6.
The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified. Here, we report that giardial glucosylceramide transferase-1 (gGlcT1), an enzyme of sphingolipid biosynthesis, plays a key role in ESV biogenesis and maintaining cyst viability. We find that overexpression of this enzyme induced the formation of aggregated/enlarged ESVs and generated clustered cysts with reduced viability. The silencing of gGlcT1 synthesis by antisense morpholino oligonucleotide abolished ESV production and generated mostly nonviable cysts. Interestingly, when gGlcT1-overexpressed Giardia was transfected with anti-gGlcT1 morpholino, the enzyme activity, vesicle biogenesis, and cyst viability returned to normal, suggesting that the regulated expression of gGlcT1 is important for encystation and viable cyst production. Furthermore, the overexpression of gGlcT1 increased the influx of membrane lipids and fatty acids without altering the fluidity of plasma membranes, indicating that the expression of gGlcT1 activity is linked to lipid internalization and maintaining the overall lipid balance in this parasite. Taken together, our results suggest that gGlcT1 is a key player of ESV biogenesis and cyst viability and therefore could be targeted for developing new anti-giardial therapies.  相似文献   

7.

Background  

Compared with many protists, Giardia lamblia has a simple life cycle alternating between cyst and trophozoite. Most research on the molecular biology of Giardia parasites has focused on trophozoites and the processes of excystation and encystation, whereas cysts have attracted less interest. The striking morphological differences between the dormant cyst and the rapidly dividing and motile trophozoite implies profound changes in the metabolism as the parasite encysts in the host's intestine and excysts upon ingestion by a new host.  相似文献   

8.
The protozoan parasite Giardia lamblia acquires cholesterol from the environment since it is unable to synthesise cholesterol de novo and this is vital for trophozoite growth. Conversely, the lack of cholesterol was described as an essential event to trigger encystation, the differentiation of trophozoites to mature cysts. During the G. lamblia cell cycle, cholesterol is acquired as a free molecule as well as through receptor-mediated endocytosis (RME) of lipoproteins. In this work, we describe the involvement of RME in the cell differentiation process of G. lamblia. We found that a reduction in the expression of the medium subunit (Glµ2) of the giardial adaptin protein GlAP2 impaired RME, triggering the process of encystation in growing cells. Contrary to expectations, decreasing Glµ2 expression produced a cohort of trophozoites that yielded significantly less mature cysts when cells were induced to encyst. Analysis of the subcellular localization of Glµ2 and the cyst wall protein 1 (CWP1) during encystation was later performed, to dissect the process. Our results showed, on one hand, that blocking RME by inhibiting Glµ2 expression, and probably cholesterol entry, is sufficient to induce cell differentiation but not to complete the process of encystation. On the other hand, we observed that GlAP2 is necessary to accomplish the final steps of encystation by sorting CWP1 to the plasma membrane for cyst wall formation. The understanding of the mechanisms involved in cyst formation should provide novel insights into the control of giardiasis, an endemic worldwide neglected disease.  相似文献   

9.
In the life cycle of Entamoeba parasites alternate between the colon-dwelling trophozoite and the infectious cyst forms. The physiologic stimuli that trigger differentiation of trophozoites into cysts remain undefined. On the surface of the human-infecting Entamoeba, parasites express a galactose/N-acetylgatactosamine (gal/galNAc)-binding lectin, which plays demonstrated roles in contact-dependent lysis of target cells and resistance to host complement. Using a reptilian parasite, Entamoeba invadens, to study cyst formation in vitro, we found that efficient encystation was dependent on the presence of gal-terminated ligands in the induction medium. Precise concentration ranges of several gal-terminated ligands, such as asialofetuin, gal-bovine serum albumin (gal-BSA), and mucin, functioned in encystation medium to stimulate differentiation. Greater than 10 mM levels of free gal inhibited the amoeba aggregation that precedes encystation and prevented formation of mature cysts. Inhibitory levels of gal also prevented the up-regulation of genes which normally occurs at 24 h of encystation. The surface of Entamoeba invadens was found to express a gal lectin which has a heterodimeric structure similar to that of Entamoeba histolytica. The 30 kDa light subunit (LGL) of the E. invadens lectin is similar in overall size and sequence to the LGL of E. histolytica. The heavy subunits, however, differ in size, have an identical spacing of cysteines in their extracellular domains, and have highly conserved C-terminal transmembrane and cytoplasmic domains. These results suggest a new role for the Entamoeba gal lectins in monitoring the concentrations of gal ligands in the colon and contributing to stimuli that induce encystment.  相似文献   

10.
11.
The mature cyst of Acanthamoeba is highly resistant to various antibiotics and therapeutic agents. Cyst wall of Acanthamoeba are composed of cellulose, acid-resistant proteins, lipids, and unidentified materials. Because cellulose is one of the primary components of the inner cyst wall, cellulose synthesis is essential to the process of cyst formation in Acanthamoeba. In this study, we hypothesized the key and short-step process in synthesis of cellulose from glycogen in encysting Acanthamoeba castellanii, and confirmed it by comparing the expression pattern of enzymes involving glycogenolysis and cellulose synthesis. The genes of 3 enzymes, glycogen phosphorylase, UDP-glucose pyrophosphorylase, and cellulose synthase, which are involved in the cellulose synthesis, were expressed high at the 1st and 2nd day of encystation. However, the phosphoglucomutase that facilitates the interconversion of glucose 1-phosphate and glucose 6-phosphate expressed low during encystation. This report identified the short-cut pathway of cellulose synthesis required for construction of the cyst wall during the encystation process in Acanthamoeba. This study provides important information to understand cyst wall formation in encysting Acanthamoeba.  相似文献   

12.
13.
Entamoeba histolytica, the causative agent of amebiasis infects through its cyst form and this transmission may be blocked using encystation specific protein as drug target. In this study, we have characterized the enzyme chitinase which express specifically during encystation. The reptilian parasite Entamoeba invadens, used as a model for encystation study contain three chitinases. We report the molecular cloning, over-expression and biochemical characterization of all three E. invadens chitinase. Cloned chitinases were over-expressed in bacterial system and purified by affinity chromatography. Their enzymatic profiles and substrate cleaving patterns were characterized. All of them showed binding affinity towards insoluble chitin though two of them lack the chitin binding domain. All the chitinases cleaved and released dimmers from the insoluble substrate and act as an exochitinase. Homology modeling was also done to understand the substrate binding and cleavage pattern.  相似文献   

14.
15.
One important step in the life cycle of the pathogenic protozoan Giardia lamblia is the transformation of the proliferative form, the trophozoite, into the non-proliferative cyst. This process, known as encystation, can be triggered in vitro. Morphological analysis showed that during trophozoite-cyst transformation, major changes take place: modification of the protozoan shape, internalization of the flagella, fragmentation of the adhesive disk, and appearance of encystation vesicles (ESVs), which later on fuse with the plasma membrane forming the cell wall. Sites of attachment of these vesicles to the inner portion of the protozoan plasma membrane were observed 6 h after the beginning of the encystation process. These sites were only visible when we used high-resolution scanning electron microscopy to study Giardia surface. In order to analyze the involvement of protein kinases and phosphatases on the encystation process, inhibitors of these enzymes were added to the culture medium, and their effect on the differentiation process was determined using light, immunofluorescence, and electron microscopy. Significant inhibition was observed with LY294002, an inhibitor of PI3 kinase; genistein, an inhibitor of tyrosine kinase; and staurosporine, at concentrations, which inhibit protein kinase C. Okadaic acid, an inhibitor or protein phosphatase, and wortmannin, an inhibitor of PI3K, did not interfere with the encystation process. However, they induced the appearance of large and pleomorphic forms where several nuclei and disorganization of the peripheral vesicles were observed.  相似文献   

16.
17.
18.

Background

Giardia passes through two stages during its life cycle, the trophozoite and the cyst. Cyst formation involves the synthesis of cyst wall proteins (CWPs) and the transport of CWPs into encystation-specific vesicles (ESVs). Active vesicular trafficking is essential for encystation, but the molecular machinery driving vesicular trafficking remains unknown. The Rab proteins are involved in the targeting of vesicles to several intracellular compartments through their association with cytoskeletal motor proteins.

Methodology and Principal Findings

In this study, we found a relationship between Rab11 and the actin cytoskeleton in CWP1 transport. Confocal microscopy showed Rab11 was distributed throughout the entire trophozoite, while in cysts it was translocated to the periphery of the cell, where it colocalized with ESVs and microfilaments. Encystation was also accompanied by changes in rab11 mRNA expression. To evaluate the role of microfilaments in encystation, the cells were treated with latrunculin A. Scanning electron microscopy showed this treatment resulted in morphological damages to encysted parasites. The intensity of fluorescence-labeled Rab11 and CWP1 in ESVs and cyst walls was reduced, and rab11 and cwp1 mRNA levels were down-regulated. Furthermore, knocking down Rab11 with a hammerhead ribozyme resulted in an up to 80% down-regulation of rab11 mRNA. Although this knockdown did not appear lethal for trophozoites and did not affect cwp1 expression during the encystation, confocal images showed CWP1 was redistributed throughout the cytosol.

Conclusions and Significance

Our results indicate that Rab11 participates in the early and late encystation stages by regulating CWP1 localization and the actin-mediated transport of ESVs towards the periphery. In addition, alterations in the dynamics of actin affected rab11 and cwp1 expression. Our results provide new information about the molecules involved in Giardia encystation and suggest that Rab11 and actin may be useful as novel pharmacological targets.  相似文献   

19.
ABSTRACT. An important aspect of the biology of Naegleria sp. is the differentiation processes that occur during encystation and excystation. We studied these using both fluorescence and transmission electron microscopy techniques. In the initial stages of encystation, the cisternae of the endoplasmic reticulum became densely filled with a fibrillar material. Vesicles with a similar content that appeared to be derived from the cisternae were also observed in close contact with the plasma membrane. As encystation progressed, the fibrillar material became localized on the surface of the amoeba. An irregular compaction was observed in some areas of the cyst wall, which contained thin extensions of the cyst wall fibrillar material. Completely formed cysts had two to three ostioles, each sealed by an operculum. The operculum contained two areas in which a differential compaction of the fibrillar structure was observed. When excystation was induced, small dense granules (DGs), which were in close contact with fibrillar material were observed in the cyst cytoplasm and in the peritrophic space. During excystation, the more compact component of the operculum moves to enable the pseudopod of the emerging trophozoite to penetrate the ostiole. Vacuoles containing a fibrillar material, probably derived from the cyst wall, were observed in the cytoplasm of the pseudopodia. Our results provide a platform for further studies using biochemical markers to investigate the origin of the cyst wall as well as the role of DGs during excystation in Naegleria .  相似文献   

20.
To examine the expressed gene profile during encystation of Acanthamoeba castellanii Castellani, we used differentially expressed gene (DGE) screening by RT-PCR with 20 sets of random primers. From this analysis, we found that approximately 16 genes showed upregulation during encystation. We chose 6 genes, which had relatively higher expression levels, for further investigation. Based on homology search in database, DEG2 showed 55% of similarity with xylose isomerase, DEG9 showed 37% of similarity with Na P-type ATPase, and DEG14 showed 77% of similarity with subtilisin-like serine proteinase. DEG3 and DEG26 were identified as hypothetical proteins and DEG25 exhibited no significant similarity to any known protein. Encystation of Acanthamoeba has been suggested to be a process to resist adverse environmental or nutritional conditions. Further characterization studies of these genes may provide us with more information on the encystation mechanism of Acanthamoeba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号