首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background  

During vertebrate embryogenesis the initial stages of bone formation by endochondral ossification involve the aggregation and proliferation of mesenchymal cells into condensations. Continued growth of the condensations and differentiation of the mesenchymal cells into chondrocytes results in the formation of cartilage templates, or anlagen, which prefigure the shape of the future bones. The chondrocytes in the anlagen further differentiate by undergoing a complex sequence of maturation and hypertrophy, and are eventually replaced by mineralized bone. Regulation of the onset of chondrogenesis is incompletely understood, and would be informed by comprehensive analyses of in vivo gene expression.  相似文献   

2.
With the aim of identifying novel genes regulating cartilage development and degeneration, we screened a cartilage-specific expressed sequence tag database. Esophageal cancer related gene 4 (ECRG4) was selected, based on the criteria of ‘chondrocyte-specific’ and ‘unknown function.’ ECRG4 expression was particularly abundant in chondrocytes and cartilage, compared to various other mouse tissues. ECRG4 is a secreted protein that undergoes cleavage after secretion. The protein is specifically expressed in chondrocytes in a manner dependent on differentiation status. The expression is very low in mesenchymal cells, and dramatically increased during chondrogenic differentiation. The ECRG4 level in differentiated chondrocytes is decreased during hypertrophic maturation, both in vitro and in vivo, and additionally in dedifferentiating chondrocytes induced by interleukin-1β or serial subculture, chondrocytes of human osteoarthritic cartilage and experimental mouse osteoarthritic cartilage. However, ectopic expression or exogenous ECRG4 treatment in a primary culture cell system does not affect chondrogenesis of mesenchymal cells, hypertrophic maturation of chondrocytes or dedifferentiation of differentiated chondrocytes. Additionally, cartilage development and organization of extracellular matrix are not affected in transgenic mice overexpressing ECRG4 in cartilage tissue. However, ectopic expression of ECRG4 reduced proliferation of primary culture chondrocytes. While the underlying mechanisms of ECRG4 expression and specific roles remain to be elucidated in more detail, our results support its function as a marker of differentiated articular chondrocytes and cartilage destruction.  相似文献   

3.
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.  相似文献   

4.
We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with in vitro cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.  相似文献   

5.
骨髓间充质干细胞是一类具有自我复制和多向分化潜能的成体干细胞,可以通过定向诱导分化为成骨细胞、软骨细胞、脂肪细胞等,是目前骨再生医学和细胞治疗研究最多的理想种子细胞。在骨缺损的修复过程中,骨髓间充质干细胞内成软骨相关基因表达升高进而分化为软骨细胞,后期随着成骨细胞和破骨细胞的形成及血管长入,软骨基质逐步降解并被骨基质所替换。软骨细胞参与了骨缺损前期的修复过程,调控软骨形成的信号通路及相关因子不仅调控骨髓间充质干细胞成软骨细胞分化,同时在成骨细胞分化过程中也发挥着重要的作用。对调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的调控作用和研究现状进行了总结,以期为临床寻找更好的治疗骨缺损的方法提供理论依据和研究方向。  相似文献   

6.
Articular cartilage lacks self-repair capacity. Currently, two methods employing autologous cells are used to stimulate repair of articular cartilage. Micro-fracture induced repair induces autologous mesenchymal cell migration from bone marrow. Autologous chondrocytes' transplantation involves in vitro expansion of chondrocytes, and later implantation. In 15 patients de-differentiated chondrocytes obtained by cartilage biopsy were compared to cells derived from repair tissue induced by micro-fracture. These patients all underwent micro-fracture during the cartilage biopsy procedure. Autologous chondrocytes' transplantation was performed at least two months later then the biopsy. Tissue bits from articular cartilage and micro-fracture repair tissue were incubated in-vitro and explant cell cultures established. The cell cultures were assessed by immunohistochemistry and induced to differentiate. Differentiation into bone tissue was stimulated by addition of basic fibroblast growth factor, ascorbate and dexamethasone. High density (micro-mass) culture was used to stimulate chondrogenesis. Both cell cultures consist of mesenchymal progenitors as indicated by fibroblast growth factor receptor 3 expression and anti-CD-34+ antibodies. However, the micro-fracture generated repair tissue consists of osteocalcin-expressing cells destined to become bone. Collagen type II expression does not occur in these cells compared to autologous chondrocytes. Inducible nitric oxide synthase expression by microfracture cells is likely to damage surrounding articular cartilage in vivo. In conclusion, cells recruited by micro-fracture are inferior for cartilage regeneration purposes to those from cartilage biopsies.  相似文献   

7.
Previously we showed that CCN family member 2/connective tissue growth factor (CCN2) promotes the proliferation, differentiation, and maturation of growth cartilage cells in vitro. To elucidate the specific role and molecular mechanism of CCN2 in cartilage development in vivo, in the present study we generated transgenic mice overexpressing CCN2 and analyzed them with respect to cartilage and bone development. Transgenic mice were generated expressing a ccn2/lacZ fusion gene in cartilage under the control of the 6 kb-Col2a1-enhancer/promoter. Changes in cartilage and bone development were analyzed histologically and immunohistologically and also by micro CT. Primary chondrocytes as well as limb bud mesenchymal cells were cultured and analyzed for changes in expression of cartilage–related genes, and non-transgenic chondrocytes were treated in culture with recombinant CCN2. Newborn transgenic mice showed extended length of their long bones, increased content of proteoglycans and collagen II accumulation. Micro-CT analysis of transgenic bones indicated increases in bone thickness and mineral density. Chondrocyte proliferation was enhanced in the transgenic cartilage. In in vitro short-term cultures of transgenic chondrocytes, the expression of col2a1, aggrecan and ccn2 genes was substantially enhanced; and in long-term cultures the expression levels of these genes were further enhanced. Also, in vitro chondrogenesis was strongly enhanced. IGF-I and IGF-II mRNA levels were elevated in transgenic chondrocytes, and treatment of non-transgenic chondrocytes with recombinant CCN2 stimulated the expression of these mRNA. The addition of CCN2 to non-transgenic chondrocytes induced the phosphorylation of IGFR, and ccn2-overexpressing chondrocytes showed enhanced phosphorylation of IGFR. Our data indicates that the observed effects of CCN2 may be mediated in part by CCN2-induced overexpression of IGF-I and IGF-II. These findings indicate that CCN2-overexpression in transgenic mice accelerated the endochondral ossification processes, resulting in increased length of their long bones. Our results also indicate the possible involvement of locally enhanced IGF-I or IGF-II in this extended bone growth.  相似文献   

8.
9.
10.
Characterization of dedifferentiated chondrocytes (DECs) and mesenchymal stem cells capable of differentiating into chondrocytes is of biological and clinical interest. We isolated DECs and bone marrow stromal cells (BMSCs), H4-1 and H3-4, and demonstrated that the cells started to produce extracellular matrices, such as type II collagen and aggrecan, at an early stage of chondrosphere formation. Furthermore, cDNA sequencing of cDNA libraries constricted by the oligocapping method was performed to analyze difference in mRNA expression profiling between DECs and marrow stromal cells. Upon redifferentiation of DECs, cartilage-related extracellular matrix genes, such as those encoding leucine-rich small proteoglycans, cartilage oligomeric matrix protein, and chitinase 3-like 1 (cartilage glycoprotein-39), were highly expressed. Growth factors such as FGF7 and CTGF were detected at a high frequency in the growth stage of monolayer stromal cultures. By combining the expression profile and flow cytometry, we demonstrated that isolated stromal cells, defined by CD34(-), c-kit(-), and CD140alpha(- or low), have chondrogenic potential. The newly established human mesenchymal cells with expression profiling provide a powerful model for a study of chondrogenic differentiation and further understanding of cartilage regeneration in the means of redifferentiated DECs and BMSCs.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The main purpose of the article is to review recent knowledge about growth factors and their effect on the chondrogenic differentiation of mesenchymal stem cells under in vitro conditions. Damaged or lost articular cartilage leads to progressive debilitation, which have major impact on the life quality of the affected individuals of both sexes in all age groups. Mature hyaline cartilage has a very low self-repair potential due to intrinsic properties - lack of innervation and vascular supply. Another limiting factor is low mitotic potential of chondrocytes. Small defects are healed by migration of chondrocytes, while large ones are healed by formation of inferior fibrocartilage. However, in many cases osteoarthritis develops. Recently, cellular therapy combining mesenchymal stem cells and proper differentiation factors seems to be promising tool for hyaline cartilage defects healing.  相似文献   

18.
19.
20.
Induced pluripotent stem cells (iPSC) hold tremendous potential for personalized cell‐based repair strategies to treat musculoskeletal disorders. To establish human iPSCs as a potential source of viable chondroprogenitors for articular cartilage repair, we assessed the in vitro chondrogenic potential of the pluripotent population versus an iPSC‐derived mesenchymal‐like progenitor population. We found the direct plating of undifferentiated iPSCs into high‐density micromass cultures in the presence of BMP‐2 promoted chondrogenic differentiation, however these conditions resulted in a mixed population of cells resembling the phenotype of articular cartilage, transient cartilage, and fibrocartilage. The progenitor cells derived from human iPSCs exhibited immunophenotypic features of mesenchymal stem cells (MSCs) and developed along multiple mesenchymal lineages, including osteoblasts, adipocytes, and chondrocytes in vitro. The data indicate the derivation of a mesenchymal stem cell population from human iPSCs is necessary to limit culture heterogeneity as well as chondrocyte maturation in the differentiated progeny. Moreover, as compared to pellet culture differentiation, BMP‐2 treatment of iPSC‐derived MSC‐like (iPSC–MSC) micromass cultures resulted in a phenotype more typical of articular chondrocytes, characterized by the enrichment of cartilage‐specific type II collagen (Col2a1), decreased expression of type I collagen (Col1a1) as well as lack of chondrocyte hypertrophy. These studies represent a first step toward identifying the most suitable iPSC progeny for developing cell‐based approaches to repair joint cartilage damage. J. Cell. Biochem. 114: 480–490, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号