首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 6 Å resolution electron density map of cat muscle pyruvate kinase has been calculated. From this map it has been possible to isolate a single molecule and to assign subunit boundaries. The binding of substrates, products and the divalent metal cation has been studied.  相似文献   

2.
Crystal structure of cat muscle pyruvate kinase at a resolution of 2.6 A   总被引:23,自引:0,他引:23  
The structure of pyruvate kinase (EC 2.7.1.40) has been determined from a 2.6 Å resolution electron density map. This map shows more detail than the previous 3.1 Å map (Stammers &; Muirhead, 1977) and has enabled a detailed chain folding to be established for two out of the three domains which make up each of the four identical subunits. A provisional chain folding has been established for the third domain. The results have been briefly reported in a previous paper (Levine et al., 1978). Details of the structure determination and a further discussion of the results are presented in this paper.Domain A (the three domains of pyruvate kinase are referred to as A, B and C) can be described in terms of a cylindrical eight-stranded parallel β sheet and an outer coaxial cylinder of eight α helices. The α helices connect adjacent strands of the β sheet. Domain B is made up of a closed anti-parallel β sheet structure. Domain C is a five-stranded β sheet of which the fourth strand is anti-parallel and the rest parallel. These strands are also interconnected by α helices.Domain A can be dissected into eight consecutive β strand—α helix units starting from the N-terminus. The arrangement of these relative to each other can be most simply described by relating them to eight planes, each at 40 ° to the cylinder axis and symmetrically placed around the cylinder. When unit 2 is aligned with one of these planes then units 1, 3, 4, 5 and 8 are also closely aligned with a plane. This analysis is also applied to triosephosphate isomerase and a strikingly similar arrangement is found. A detailed comparison of the two structures is presented. Although the lack of a chemical sequence makes it difficult to identify the amino acid residues of pyruvate kinase, side-chains are clearly visible in the map and this information is correlated with the results of previous 6 Å substrate soaking experiments and with the structure of triosephosphate isomerase. The similarities and differences are discussed in terms of similarities and differences in the reactions catalysed and also of different subunit packing.  相似文献   

3.
4.
Subunit structure of rabbit muscle pyruvate kinase   总被引:11,自引:0,他引:11  
  相似文献   

5.
The refolding of denatured rabbit muscle pyruvate kinase.   总被引:3,自引:3,他引:0       下载免费PDF全文
The refolding of rabbit muscle pyruvate kinase after denaturation by guanidine hydrochloride was studied. On dilution of the denaturing agent, enzyme activity is only partially regained. The extent of regain of activity is dependent on protein concentration, showing a marked decrease at higher concentrations. The failure to regain complete activity appears to be related to the formation of inactive aggregates, which can be separated from active enzyme by gel filtration. Insoluble aggregates can be partially re-activated after solubilization in guanidine hydrochloride. Changes in the circular-dichroism and fluorescence spectra during refolding suggest that a partially folded, inactive species is formed rapidly; this differs from native enzyme in being more susceptible to proteolysis by trypsin.  相似文献   

6.
7.
The proton transfer reactions of muscle pyruvate kinase   总被引:3,自引:0,他引:3  
  相似文献   

8.
The regulatory behavior of rabbit pyruvate kinase has been studied as a function of pH. The initial velocity of the enzyme-catalysed reaction as a function of ADP concentration was analysed with the exponential model for a regulatory enzyme. The analysis of the exponential model parameters as functions of pH provided pK values of 6.6 and 8.08 for the free enzyme in its fully ADP-bound conformation. By contrast, the binding of ADP to the ADP-free conformation of the free enzyme did not involve groups that ionize within the pH range (6.2-8.5) of these experiments. The results suggest that homotropic allosteric interactions actually alter the mode of ADP binding. The pK values of 6.63 and 9.00 determined from the analysis of V as a function of pH are readily interpreted in terms of a direct phosphoryl-transfer mechanism in which the beta-phosphoryl group of ADP (pK 6.63) acts as the nucleophile and a lysine epsilon-amino group (pK 9.0) acts as the proton donor in the pyruvate kinase reaction.  相似文献   

9.
The regulatory mechanism of rabbit muscle pyruvate kinase has been studied as a function of temperature in conjunction with phenylalanine, the allosteric inhibitor. The inhibitory effect of phenylalanine is modulated by temperature. At low temperatures, the presence of phenylalanine is almost inconsequential, but as the temperature increases so does the phenylalanine-dependent inhibition of the kinetic activity. In addition, the presence of phenylalanine induces cooperativity in the relation between velocity and substrate concentration. This effect is especially pronounced at elevated temperature. The kinetic data were analyzed using an equation that describes the steady-state kinetic velocity data as a function of five equilibrium constants and two rate constants. Van't Hoff analysis of the temperature dependence of the equilibrium constants determined by nonlinear curve fitting revealed that the interaction of pyruvate kinase with its substrate, phosphoenolpyruvate, is an enthalpy-driven process. This is consistent with an interaction that involves electrostatic forces, and indeed, phosphoenolpyruvate is a negatively charged substrate. In contrast, the interaction of pyruvate kinase with phenylalanine is strongly entropy driven. These results imply that the binding of phenylalanine involves hydrophobic interaction and are consistent with the basic concepts of strengthening of the hydrophobic effect with an increase in temperature. The effect of phenylalanine at high temperatures is the net consequence of weakening of substrate-enzyme interaction and significant strengthening of inhibitor binding to the inactive state of pyruvate kinase. The effects of salts were also studies. The results show that salts also exert a differential effect on the binding of substrate and inhibitor to the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The M1 isozyme of pyruvate kinase has been purified from human psoas muscle in a seven-step procedure. Fractionation by ammonium sulfate precipitation, heat treatment, acetone precipitation, diethylaminoethyl cellulose batchwise treatment followed by chromatography on carboxymethyl cellulose and Sephadex G-200 gave a product with a specific activity of 383 U/mg representing a 294-fold purification with a yield of 11%. The product formed orthorhombic crystals and was homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate, sedimentation velocity, sedimentation equilibrium, and immunodiffusion. The purified enzyme has a molecular weight of 240700 and has a sedimentation coefficient (S20,W) of 10.04S. It contains four subunits with identical molecular weights of 61000. No free N-terminal amino acids could be detected. Antibody prepared against the purified human M1 isozyme does not cross-react by immunodiffusion or enzyme inactivation with the human erythrocyte isozyme and in the reverse experiment antibody prepared against human erythrocyte pyruvate kinase does not cross-react with the purified M1 isozyme. The amino acid composition of the M1 isozyme is presented.  相似文献   

11.
Rabbit muscle pyruvate kinase catalyzes the hydrolysis of P-enolpyruvate at the same active site which catalyzes the physiologically important kinase reaction. The hydrolase activity is lower than the kinase activity by a factor of at least 10(3). There are specific monovalent cation and divalent cation requirements. No other cofactors are required. The relative activation of the pyruvate kinase for the hydrolase reaction is: Ni(II) greater than Co(II) greater than Mg(II) greater than Mn(II). This parallels the rates of nonenzymatic hydrolysis of P-enolpyruvate (Benkovic, S.J., and Schray, K.J. (1968) Biochemistry 7, 4097-4102). The pH rate profiles of the hydrolase and kinase reactions activated by Ni(II) and Co(II) are similar, suggesting common features in their mechanisms. In contrast to the kinase reaction, the reaction velocity of the hydrolase increases at high Co(II) concentrations indicating a second mode for hydrolysis.  相似文献   

12.
13.
14.
The allosteric inhibition of Ml-type pyruvate kinase from rabbit skeletal muscle by phenylalanine is reciprocally dependent on Mg2+ and phosphoenolpyruvate concentrations . At pH 8, phenylalanine acts as a competitive inhibitor with respect to Mg2+ and phosphoenolpyruvate, and vice versa. Phenylalanine introduces sigmoidicity into the dependence of the reaction velocity on [Mg2+]. In vitro kinetic analysis indicates that phenylalanine inhibition of muscle pyruvate kinase is unlikely to have regulatory significance in vivo.  相似文献   

15.
The subunit structure of rat liver pyruvate kinase   总被引:1,自引:0,他引:1  
The amino acid composition for rat liver pyruvate kinase is reported. Thin layer peptide mapping of the tryptic digests yields 44 ninhydrin-reactive peptides, which is one-quarter the total number of lysyl and arginyl residues. No amino-terminal residue has been detected using the dansyl chloride procedure. Acid urea disc gel electrophoresis of the protein subunits yields only one protein band; yet, isoelectric focusing of the subunits in urea yields two protein bands. These results suggest that pyruvate kinase (L-type isozyme) consists of four subunits of similar primary structure, but with sufficient microheterogeniety to be able to resolve two types of subunits upon isoelectric focusing.  相似文献   

16.
The kinetics of rabbit muscle pyruvate kinase were studied in assays at pH 7.4, where the relationships between the initial velocities of the catalysed reaction and the concentrations of substrates ADP, phosphoenolpyruvate and Mg2+ are non-hyperbolic. The data were used to test the applicability of the exponential model for a regulatory enzyme, which has been here extended to describe the behaviour of a three-substrate enzyme. It appears that the data can be represented by the model and as a result permit the conclusion that the substrates influence one another's binding by the same type of charge interactions that are evident in the Michaelis-Menten kinetics of the enzyme observed at pH 6.2. Evidence is also presented indicating that MgADP acts as a dead-end inhibitor of the enzyme at pH 7.4.  相似文献   

17.
The initial velocity of the reaction catalysed by rabbit muscle pyruvate kinase was studied as a function of the concentrations of the modifiers phenylalanine and fructose 1,6-bisphosphate under conditions where the relationships between the initial velocities and the concentrations of substrates are non-hyperbolic. It is shown that these data can be represented by the exponential model for a regulatory enzyme.  相似文献   

18.
The interaction of the fluorescent probe 1,8-anilinonaphthalene sulfonate with rabbit muscle pyruvate kinase is reported. Four moles of 1,8-anilinonaphthalene sulfonate interact per mole of the 4-subunit enzyme with a dissociation constant of 1.7 × 10?4m at 30 °. The interaction is not competitive with substrates ADP and phosphoenolpyruvate, with cations K+ and Mg2+, nor with effector phenylalanine.  相似文献   

19.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

20.
Summary The steady-state kinetics of human skeletal muscle pyruvate kinase (MA) and its RNA-complex (MB) has been examined and compared. Kinetic studies revealed significant differences in kinetic properties with respect to free and complex form of pyruvate kinase.The MA form follows a simple Michaelis-Menten kinetics in contrast with the MB form, which displays a negative cooperativity with respect to ADP. Vmax for the complex is 40–60% that for free enzyme. Heterologous RNA is a noncompetitive inhibitor of free enzyme but the kinetics of the complex (MB) is not affected.In presence of 1.0 mM ATP in an assay mixture the kinetic constants of the complex were unchanged except for Vmax, which increased by nearly 60%. Aged preparations of free enzyme (MA) were activated by 100% and more, but the native enzyme was inhibited by 22%.Inorganic phosphate is a potent activator of both forms of pyruvate kinase. In presence of 50 mM K-phosphate the apparent Michaelis constant and interaction coefficient are unchanged, but Vmax for free enzyme increases by 35% and for the complex by 70%, respectively. The specific activity of aged MA form can be restored to the original value after incubation of the enzyme in 50 mM K-phosphate, pH 7.6, or by addition of ATP (1.0 mM) to the assay mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号