首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物乳杆菌ZS2058在磷酸盐缓冲液体系中生物转化共轭亚油酸   总被引:12,自引:0,他引:12  
植物乳杆菌ZS2058是从泡菜中筛选到一株具有转化共轭亚油酸能力的乳酸菌。该菌株在MRS培养基中经0.5mg/mL的亚油酸诱导培养后,所获得的菌体细胞具有较强的转化能力。文中就植物乳杆菌ZS2058水洗细胞在磷酸盐缓冲液体系中生物转化共轭亚油酸进行了深入研究。在非厌氧条件下,植物乳杆菌ZS2058在亚油酸浓度为1mg/mL,湿细胞质量浓度约为150mg/mL,120r/min、37℃的条件下反应24h后,能将亚油酸转化为共轭亚油酸和羟基脂肪酸,其中c9,t11-CLA占所产生的CLA总量的96.4%,产量可高达312.4μg/mL,说明该菌株有很强的专一性。随着反应进一步进行,反应至36h时,c9,t11-CLA含量逐渐减少,伴随着大量羟基脂肪酸的产生;并且,以CLA(c9,t11-CLA和t10,c12-CLA的混合样品)为底物进行反应时,c9,t11-CLA被转化为羟基脂肪酸。由此可知,c9,t11-CLA可能是该菌株生物转化LA过程中的一个中间产物。  相似文献   

2.
Gene expression and activity of matrix-metalloproteinases (MMP)-2 and -9 in macrophages are reduced through peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent inhibition of NF-kappaB. Since conjugated linoleic acids (CLAs) are PPARgamma ligands and known to inhibit NF-kappaB via PPARgamma, we studied whether CLA isomers are capable of reducing gene expression and gelatinolytic activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which has not yet been investigated. Incubation of PMA-differentiated THP-1 cells with either c9t11-CLA, t10c12-CLA or linoleic acid (LA), as a reference fatty acid, resulted in a significant incorporation of the respective fatty acids into total cell lipids relative to control cells (P<.05). Treatment of PMA-differentiated THP-1 cells with 10 and 20 mumol/L troglitazone but not with 10 or 100 mumol/L c9t11-CLA, t10c12-CLA or LA reduced relative mRNA concentrations and activity of MMP-2 and MMP-9 compared to control cells (P<.05). DNA-binding activity of NF-kappaB and PPARgamma and mRNA expression of the NF-kappaB target gene cPLA(2) were not influenced by treatment with CLA. In contrast, treatment of PMA-differentiated THP-1 cells with troglitazone significantly increased transactivation of PPARgamma and decreased DNA-binding activity of NF-kappaB and relative mRNA concentration of cPLA(2) relative to control cells (P<.05). In conclusion, the present study revealed that CLA isomers, in contrast to troglitazone, did not reduce gene expression and activity of MMP-2 and -9 in PMA-differentiated THP-1 macrophages, which is probably explained by the observation that CLA isomers neither activated PPARgamma nor reduced DNA-binding activity of NF-kappaB. This suggests that CLA isomers are ineffective in MMP-associated extracellular matrix degradation which is thought to contribute to the progression and rupture of advanced atherosclerotic plaques.  相似文献   

3.
Conjugated linoleic acid (CLA) is a dietary fatty acid that has been shown to reduce tumorigenesis and metastasis in breast, prostate and colon cancer in animals. However, the mechanism of its action has not been clarified. The goal of this study was to determine whether CLA altered mouse mammary tumor cell growth and whether specific metabolites of the lipoxygenase pathway were involved in CLA action. Both t10, c12-CLA and a lipoxygenase inhibitor, but not c9, t11-CLA or linoleic acid (LA), reduced mouse mammary tumor cell viability and growth by inducing apoptosis and reducing cell proliferation. t10, c12-CLA reduced the production of the 5-lipoxygenase metabolite, 5-hydroxyeicosatetraenoic acid (5-HETE). That effect was not seen with c9, t11-CLA or LA. Adding 5-HETE back to tumor cells reduced the t10, c12-CLA effect on both apoptosis and cell proliferation. These data suggest that t10, c12-CLA reduction of tumor cell growth may involve the suppression of the 5-lipoxygenase metabolite, 5-HETE, with subsequent effects on apoptosis and cell proliferation.  相似文献   

4.
Conjugated linoleic acids (CLA) are positional and geometric dienoic isomers of linoleic acid. Dietary CLA supplementation leads to a drop in fat mass in various species, including in humans. The t10,c12-CLA isomer is responsible for this anti-obesity effect. The reduction of fat mass is especially dramatic in the mouse, in which it is associated with severe hyperinsulinemia, insulin resistance and massive liver steatosis. The origin of these adverse side effects and putative chronology of events leading to CLA-mediated lipoatrophic syndrome are presented and discussed in this review.  相似文献   

5.
The chemiluminescent response of conjugated linoleic acid isomers (CLAs), linoleic acid (LA) and methyl linoleate (LAME) against the prooxidant t-butyl hydroperoxide (tBHP) was analyzed. The c9, t11-CLA and t10, c12-CLA isomers showed significant photoemission at the highest concentration used, while photoemission was not detected at any concentration of LA and LAME analyzed. These results show that CLAs are more susceptible to peroxidation than LA and LAME. Likewise, the effect of CLA, LA and LAME on lipid peroxidation of triglycerides rich in C20:5 omega3 and C22:6 omega3 (Tg omega3-PUFAs) was investigated. For that, chemiluminescence produced by triglycerides in the presence of tBHP, previously incubated with different concentrations of CLAs, LA and LAME (from 1 to 200 mM) was registered for 60 min. Triglycerides in the presence of t-BHP produced a peak of light emission (3151+/-134 RLUs) 5 min after addition. CLAs produced significant inhibition on photoemission, t10, c12-CLA being more effective than the c9, t11-CLA isomer. LA and LAME did not have an effect on lipid peroxidation of Tg omega3-PUFAs. CLA isomers, LA and LAME were also investigated for free radical scavenging properties against the stable radical (DPPH()). Both CLA isomers reacted and quenched DPPH() at all tested levels (from 5 to 25 mM), while LA and LAME did not show radical quenching activity even at the highest concentration tested. These data indicate that CLAs would provide protection against free radicals, but LA and LAME cannot.  相似文献   

6.
This study investigated the incorporation of cis-9,trans-11 conjugated linoleic acid (c9,t11 CLA) and trans-10,cis-12-CLA (t10,c12 CLA) into plasma and peripheral blood mononuclear cell (PBMC) lipids when consumed as supplements highly enriched in these isomers. Healthy men (n = 49, age 31 +/- 8 years) consumed one, two, and four capsules containing approximately 600 mg of either c9,t11 CLA or t10,c12 CLA per capsule for sequential 8 week periods followed by a 6 week washout before consuming the alternative isomer. Both isomers were incorporated in a dose-dependent manner into plasma phosphatidylcholine (PC) (c9,t11 CLA r = 0.779, t10,c12 CLA r = 0.738; P < 0.0001) and cholesteryl ester (CE) (c9,t11 CLA r = 0.706, t10,c12 CLA r = 0.788; P < 0.0001). Only t10,c12 CLA was enriched in plasma nonesterified fatty acids. Both c9,t11 CLA and t10,c12 CLA were incorporated linearly into PBMC total lipids (r = 0.285 and r = 0.273, respectively; P < 0.0005). The highest concentrations of c9,t11 CLA and t10,c12 CLA in PBMC lipids were 3- to 4-fold lower than those in plasma PC and CE. These data suggest that the level of intake is a major determinant of plasma and PBMC CLA content, although PBMCs appear to incorporate both CLA isomers less readily.  相似文献   

7.
Obesity is associated with a high risk of developing diabetes and cardiovascular disease. Therefore, management of body weight to prevent obesity remains as an important priority. The present investigation addresses the effects of conjugated linoleic acid (CLA) isomers on body weight and composition of body fat in female C57Bl/6J mice. To investigate the differential effects of individual CLA isomers and their mixture on changes in lean mass, fat mass, glucose and insulin, 6-month-old female C57BL/6J mice were fed with 10% corn oil (CO) as a dietary fat source and either supplemented with purified cis 9,trans 11 (c9t11) CLA (0.5%) or trans 10,cis 12 (t10c12) CLA (0.5%) and/or their mixture (50:50) for 6 months. As a result of 6 months' dietary intervention, both the t10c12-CLA and CLA mix showed increased lean mass and reduced fat mass compared to the CO and c9t11-CLA groups. Insulin resistance was, however, increased in t10c12-CLA and CLA mix-fed groups based on the results of homeostasis model assessment (HOMA), the revised quantitative insulin-sensitivity check index (R-QUICKI) and also with intravenous glucose tolerance test (IVGTT). In conclusion, long-term feeding of the major CLA isomers in 12-month-old C57Bl/6J mice revealed a contrasting effect on fat mass, glucose and insulin metabolism. The t10c12 isomer is found to reduce the fat mass and increase the lean mass but significantly contributed to increase insulin resistance and liver steatosis, whereas c9t11 isomer prevented the insulin resistance.  相似文献   

8.
The fatty acid-conjugated linoleic acid (CLA) enhances glucose tolerance and insulin action on skeletal muscle glucose transport in rodent models of insulin resistance. However, no study has directly compared the metabolic effects of the two primary CLA isomers, cis-9,trans-11-CLA (c9,t11-CLA) and trans-10,cis-12-CLA (t10,c12-CLA). Therefore, we assessed the effects of a 50:50 mixture of these two CLA isomers (M-CLA) and of preparations enriched in either c9,t11-CLA (76% enriched) or t10,c12-CLA (90% enriched) on glucose tolerance and insulin-stimulated glucose transport in skeletal muscle of the insulin-resistant obese Zucker (fa/fa) rat. Animals were treated daily by gavage with either vehicle (corn oil), M-CLA, c9,t11-CLA, or t10,c12-CLA (all CLA treatments at 1.5 g total CLA/kg body wt) for 21 consecutive days. During an oral glucose tolerance test, glucose responses were reduced (P < 0.05) by 10 and 16%, respectively, in the M-CLA and t10,c12-CLA animals, respectively, whereas insulin responses were diminished by 21 and 19% in these same groups. There were no significant alterations in these responses in the c9,t11-CLA group. Insulin-mediated glucose transport activity was enhanced by M-CLA treatment in both type I soleus (32%) and type IIb epitrochlearis (58%) muscles and by 36 and 48%, respectively, with t10,c12-CLA. In the soleus, these increases were associated with decreases in protein carbonyls (index of oxidative stress, r = -0.616, P = 0.0038) and intramuscular triglycerides (r = -0.631, P = 0.0028). Treatment with c9,t11-CLA was without effect on these variables. These results suggest that the ability of CLA treatment to improve glucose tolerance and insulin-stimulated glucose transport activity in insulin-resistant skeletal muscle of the obese Zucker rat are associated with a reduction in oxidative stress and muscle lipid levels and can be specifically ascribed to the actions of the t10,c12 isomer. In the obese Zucker rat, the c9,t11 isomer of CLA is metabolically neutral.  相似文献   

9.
This study compared the growth inhibitory effects of pure conjugated linoleic acid (CLA) isomers [cis(c)9,c11-CLA, c9,trans(t)11-CLA, t9,t11-CLA, and t10,c12-CLA] on human colon cancer cell lines (Caco-2, HT-29 and DLD-1). When Caco-2 cells were incubated up to 72 h with 200 μM, each isomer, even in the presence of 10% fetal bovine serum (FBS), cell proliferation was inhibited by all CLA isomers in a time-dependent manner. The strongest inhibitory effect was shown by t9,t11-CLA, followed by t10,c12-CLA, c9,c11-CLA and c9,t11-CLA, respectively. The strongest effect of t9,t11-CLA was also observed in other colon cancer cell lines (HT-29 and DLD-1). The order of the inhibitory effect of CLA isomer was confirmed in the presence of 1% FBS. CLA isomers supplemented in the culture medium were readily incorporated into the cellular lipids of Caco-2 and changed their fatty acid composition. The CLA contents in cellular lipids were 26.2±2.7% for t9,t11-CLA, 35.9±0.3% for c9,t11-CLA and 46.3±0.8% for t10,c12-CLA, respectively. DNA fragmentation was clearly recognized in Caco-2 cells treated with t9,t11-CLA. This apoptotic effect of t9,t11-CLA was dose- and time-dependent. DNA fragmentation was also induced by 9c,11t-CLA and t10,c12-CLA. However, fragmentation levels with both isomers were much lower than that with t9,t11-CLA. t9t11-CLA treatment of Caco-2 cells decreased Bcl-2 levels in association with apoptosis, whereas Bax levels remained unchanged. These results suggest that decreased expression of Bcl-2 by t9t11-CLA might increase the sensitivity of cells to lipid peroxidation and to programmed cell death, apoptosis.  相似文献   

10.
Conjugated linoleic acid (CLA) has been shown to positively influence calcium and bone metabolism. Earlier, we showed that CLA (equal mixture of c9t11-CLA and t10c12-CLA) could protect age-associated bone loss by modulating inflammatory markers and osteoclastogenesis. Since, c9t11-CLA and t10c12-CLA isomers differentially regulate functional parameters and gene expression in different cell types, we examined the efficacy of individual CLA isomers against age-associated bone loss using 12 months old C57BL/6 female mice fed for 6 months with 10% corn oil (CO), 9.5% CO + 0.5% c9t11-CLA, 9.5% CO + 0.5% t10c12-CLA or 9.5% CO + 0.25% c9t11-CLA + 0.25% t10c12-CLA. Mice fed a t10c12-CLA diet maintained a significantly higher bone mineral density (BMD) in femoral, tibial and lumbar regions than those fed CO and c9t11-CLA diets as measured by dual-energy-X-ray absorptiometry (DXA). The increased BMD was accompanied by a decreased production of osteoclastogenic factors, that is, RANKL, TRAP5b, TNF-alpha and IL-6 in serum. Moreover, a significant reduction of high fat diet-induced bone marrow adiposity was observed in t10c12-CLA fed mice as compared to that of CO and c9t11-CLA fed mice, as measured by Oil-Red-O staining of bone marrow sections. In addition, a significant reduction of osteoclast differentiation and bone resorbing pit formation was observed in t10c12-CLA treated RAW 264.7 cell culture stimulated with RANKL as compared to that of c9t11-CLA and linoleic acid treated cultures. In conclusion, these findings suggest that t10c12-CLA is the most potent CLA isomer and it exerts its anti-osteoporotic effect by modulating osteoclastogenesis and bone marrow adiposity.  相似文献   

11.
Conjugated linoleic acid (CLA), a dietary fat, has been considered beneficial in metabolic syndrome. Despite several findings indicating that CLA improves glucose clearance, little information is available regarding the cellular dynamics of CLA on skeletal muscle. We sought to investigate the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in cis-9, trans-11(c9,t11) and trans-10, cis-12 (t10,c12) CLA isomer-mediated glucose transport by L6 myotubes. t10,c12-CLA stimulated both intracellular Ca(2+) release (Ca(i)(2+)) and CaMKII phosphorylation, whereas c9,t11-CLA showed only modest effects on both. Sequestering Ca(i)(2+) with BAPTA/AM abrogated the effect of both CLA isomers on Akt substrate-160 kDa (AS160) phosphorylation and glucose uptake by myotubes. Exposing myotubes to KN-93 or autocamtide 2-related inhibitory peptide to block CaMKII activity prevented both CLA isomers from inducing AS160 phosphorylation and glucose transport. Likewise, genetic knockdown of CaMKII in myotubes using siRNA completely abolished CLA isomer-mediated glucose uptake. These results indicate that CLA isomers require Ca(i)(2+)-CaMKII to mediate glucose uptake. Evidence that CaMKII blockers inhibit t10,c12-CLA-mediated AMP-activated protein kinase (AMPK) activation indicated that CaMKII acts upstream of AMPK in response to t10,c12-CLA. Lastly, CLA isomers stimulated the formation of reactive oxygen species but had no effect on stress-activated protein kinase/c-jun NH(2)-terminal kinase. These data establish that t10,c12-CLA acts via Ca(i)(2+)-CaMKII-AMPK-AS160 to stimulate skeletal muscle glucose transport, whereas the mechanism of c9,t11-CLA remains unclear. Given that impairments in muscle glucose utilisation are apparent in metabolic syndrome, delineating the molecular mechanisms by which CLA isomers mediate muscle glucose uptake may identify new approaches to manage this condition.  相似文献   

12.
Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers have attracted great interest because of their potential health benefits. Formation of CLA and CLNA takes place in the rumen during biohydrogenation. Several studies have indicated that certain types of intestinal bacteria, including bifidobacteria, are able to convert linoleic acid (LA) to CLA. The role of intestinal bacteria in the formation of CLNA isomers is largely unknown. In the present study, a screening of 36 different Bifidobacterium strains for their ability to produce CLA and CLNA from free LA and α-linolenic acid (LNA), respectively, was performed. The strains were grown in MRS broth, to which LA or LNA (0.5 mg ml−1) were added after 7 h of bacterial growth. Cultures were further incubated at 37°C for 72 h. Six strains (four Bifidobacterium breve strains, a Bifidobacterium bifidum strain and a Bifidobacterium pseudolongum strain) were able to produce different CLA and CLNA isomers. Conversion percentages varied from 19.5% to 53.5% for CLA production and from 55.6% to 78.4% for CLNA production among these strains. The CLA isomers produced were further identified with Ag+-HPLC. LA was mainly converted to t9t11-CLA and c9t11-CLA. The main CLNA isomers were identified with GC-MS as c9t11c15-CLNA and t9t11c15-CLNA.  相似文献   

13.
Oxidative stress, hepatic steatosis, and mitochondrial dysfunction are key pathophysiological features of nonalcoholic fatty liver disease. A conjugated linoleic acid (CLA) mixture of cis9,trans11 (9,11-CLA) and trans10,cis12 (10,12-CLA) isomers enhanced the antioxidant/detoxifying mechanism via the activation of nuclear factor E2-related factor-2 (Nrf2) and improved mitochondrial function, but less is known about the actions of specific isomers. The differential ability of individual CLA isomers to modulate these pathways was explored in Wistar rats fed for 4 weeks with a lard-based high-fat diet (L) or with control diet (CD), and, within each dietary treatment, two subgroups were daily administered with 9,11-CLA or 10,12-CLA (30 mg/day). The 9,11-CLA, but not 10,12-CLA, supplementation to CD rats improves the GSH/GSSG ratio in the liver, mitochondrial functions, and Nrf2 activity. Histological examination reveals a reduction of steatosis in L-fed rats supplemented with both CLA isomers, but 9,11-CLA downregulated plasma concentrations of proinflammatory markers, mitochondrial dysfunction, and oxidative stress markers in liver more efficiently than in 10,12-CLA treatment. The present study demonstrates the higher protective effect of 9,11-CLA against diet-induced pro-oxidant and proinflammatory signs and suggests that these effects are determined, at least in part, by its ability to activate the Nrf2 pathway and to improve the mitochondrial functioning and biogenesis.  相似文献   

14.
Conjugated linoleic acid (CLA), a dietary lipid, has been proposed as an antidiabetic agent. However, studies specifically addressing the molecular dynamics of CLA on skeletal muscle glucose transport and differences between the key isomers are limited. We demonstrate that acute exposure of L6 myotubes to cis-9, trans-11 (c9,t11) and trans-10, cis-12 (t10,c12) CLA isomers mimics insulin action by stimulating glucose uptake and glucose transporter-4 (GLUT4) trafficking. Both c9,t10-CLA and t10,c12-CLA stimulate the phosphorylation of phosphatidylinositol 3-kinase (PI3-kinase) p85 subunit and Akt substrate-160 kDa (AS160), while showing isomer-specific effects on AMP-activated protein kinase (AMPK). CLA isomers showed synergistic effects with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-d-ribonucleoside (AICAR). Blocking PI3-kinase and AMPK prevented the stimulatory effects of t10,c12-CLA on AS160 phosphorylation and glucose uptake, indicating that this isomer acts via a PI3-kinase and AMPK-dependent mechanism, whereas the mechanism of c9,t11-CLA remains unclear. Intriguingly, CLA isomers sensitized insulin-Akt-responsive glucose uptake and prevented high insulin-induced Akt desensitisation. Together, these results establish that CLA exhibits isomer-specific effects on GLUT4 trafficking and the increase in glucose uptake induced by CLA treatment of L6 myotubes occurs via pathways that are distinctive from those utilised by insulin.  相似文献   

15.
HEAT TREATMENT OF VEGETABLE OILS GAVE RISE TO FOUR MAIN CONJUGATED LINOLEIC ACID (CLA) ISOMERS : the 9c,11t, 9t,11t, 10t,12c and 10t,12t. The diet of male Wistar rats was supplemented with 150 mg/day either 9c,11t-, 9t,11t-, 10t,12c- or 10t,12t CLA isomers for 6 days and their effects on lipid composition were investigated in liver, heart, skeletal muscle Gastrocnemius, kidneys, brain and adipose tissue. The incorporation of all isomers was low (< 1.4%) and the level was as follows : adipose tissue > Gastrocnemius > liver, kidneys > brain. The main changes in the overall lipid composition were observed in skeletal muscle (Gastrocnemius) and in heart and were associated with feeding the 10t,12c and 10t,12t isomers. The diet enriched in 10t,12t CLA decreased the total long chain polyunsaturated fatty acid proportion in Gastrocnemius (from 18.4% to 14.4%) and increased that of 20:4 n-6 in heart (from 16.9 to 19.3%). The diet enriched in 10t,12c CLA decreased the monounsaturated fatty acid proportion in Gastrocnemius (from 32.0 to 26.1%) and produced an effect similar to the 10t,12t in heart. By contrast, the 9c,11t and 9t,11t isomers did not affect fatty acid composition in all tissues and organs. We concluded that ingestion of 10t,12c and 10t,12t CLA present in oils and in CLA mixtures could change muscle lipid composition.  相似文献   

16.
Conjugated linoleic acids (CLA) are a family of polyunsaturated fatty acids (PUFA), some isomers occurring naturally in beef and dairy products and others being formed as a result of bihydrogenation of vegetable oils to form margarine. Synthetic and natural sources of CLA may have beneficial effects in a range of inflammatory conditions including colitis, atherosclerosis, metabolic syndrome and rheumatoid arthritis. Most of the biological effects have been attributed to the cis9, trans11- (c9, t11-) and the trans10, cis12- (t10, c12-) isomers. Evidence suggests that c9, t11-CLA is responsible for the anti-inflammatory effect attributed to CLA while t10, t12-CLA appears to be responsible for anti-adipogenic effects. This review will focus on the effects of CLA on the inflammatory components associated with insulin resistance, atherosclerosis and Th1 mediated inflammatory disease, at a cellular, systemic and clinical level. Whist CLA may ameliorate certain aspects of the inflammatory response, particularly within cellular and animal models, the relevance of this has yet to be clarified within the context of human health.  相似文献   

17.
共轭亚油酸(conjugated linoleic acid,CLA)是一种新型功能性油脂,顺9,反11-十八碳二烯酸(c9,t11-CLA)和反10,顺12-十八碳二烯酸(t10,c12-CLA)由于具有比其他异构体更强的生理功能得到广泛关注和研究.微生物合成CLA具有安全性高、选择特异性强等特点,研究CLA产量提高...  相似文献   

18.
Conjugated linoleic acid (CLA) is a group of positional and geometric isomers of linoleic acid (LA, C18:2 cis-9, cis-12) that are reported to have important biological activities, including protection against atherosclerosis. In this study, the potential role of the individual cis-9, trans-11 and trans-10, cis-12 isomers of CLA in atherogenesis were compared with LA in the Syrian Golden hamster. Supplementation of a high-fat, high-cholesterol diet (HFHC) with 1% (w/w) cis-9, trans-11 CLA or trans-10, cis-12 CLA did not significantly affect plasma cholesterol levels compared to supplementation with 1% (w/w) LA. Very low density lipoprotein cholesterol (VLDL-C) was lower and plasma triglycerides (TG) were higher in diets where C18:2 fatty acid was added to the HFHC diet, but neither the cis-9, trans-11 CLA group nor trans-10, cis-12 CLA group was significantly different from the LA control group. CLA supplementation did not significantly affect low density lipoprotein cholesterol (LDL-C). Trans-10, cis-12 CLA increased high density lipoprotein cholesterol (HDL-C) levels compared to LA or cis-9, trans-11 CLA (P<0.02), and although the ratio of non-HDL-C:HDL-C in the cis-9, trans-11 CLA group (1.11+/-0.54) and the trans-10, cis-12 CLA group (1.11+/-0.21) was lower than the LA group (1.29+/-0.45), the reduction did not reach statistical significance. Atherosclerosis was assessed in the ascending aorta by measuring the number of aortic cross-sections containing Oil Red O-stained intimal lesions. Compared to the LA group (60+/-11%), both the cis-9, trans-11 CLA group (38+/-8%) and the trans-10, cis-12 CLA group (28+/-7%) had fewer sections displaying a fatty streak lesion, although the differences did not reach statistical significance. These results suggest that individual CLA isomers may reduce atherosclerotic lesion development in the hamster, but when compared to LA, the apparent atheroprotective effects do not correlate with beneficial changes in lipoprotein profile.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号