首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of cyclic pH and pO2 changes on the morphology of Candida utilis was studied with time intervals measured in minutes. The pH was varied from 4.5 to 2.6, the pO2 from 70% of the saturation to 0%. The morphology was studied both visually and using the technique of optical-structural computer analysis. The regime with pH changes increased the biomass yield. However, the averaged morphological characteristics showed that the growth was slightly inhibited. Therefore, the yeast population was very heterogeneous, some cells were inhibited while other cells were stimulated, which made the economic coefficient rise. The cells were also inhibited when they were exposed in the conditions of oxygen deficiency for a short period of time. However, the cells could not be inhibited if, at the same time, the pH was extremely low. Changes in the morphology were detected earlier than either the inhibition or stimulation of growth was recorded by measuring the weight of biomass.  相似文献   

2.
A process for the stereospecific reduction of acetoacetic acid esters to the 3-(S)-hydroxy-butanoic acid esters by the yeasts Saccharomyces cerevisiae and Candida utilis grown on glucose and ethanol media was developed. A continuous single stage steady state production system was found to be superior to pulse-, batch- and fed-batch systems in terms of optical product purity, biomass concentration and production rates.

Optical purity of 3-(S)-hydroxybutanoic acid esters produced with Saccharomyces cerevisiae and Candida utilis was dependent on pH. A maximal optical purity was obtained at pH2.2 from S. cerevisiae growing on ethanol medium. The specific product formation rate of the chemostat cultures was 0.02…0.05 gg?1 h?1. C. utilis was more productive than S. cerevisiae but it reconsumed the product under carbon limited growth conditions.  相似文献   

3.
The conversion of ethanol to ethyl acetate has an advantage as a method of ethanol recovery since ethyl acetate is amenable to simple solvent extraction. The potential of Candida utilis in this conversion was studied. The kinetics of accumulation of ethanol and ethyl acetate in glucose-grown C. utilis showed that ester formation resulted from ethanol utilization under appropriate aeration and was inhibited by Fe(3+) supplementation. Candida utilis converted ethanol to ethyl acetate optimally at pH 5.0-7.0. The five-hour rate of ester production increased as the ethanol concentration increased to 10 g/L, and rapidly declined to zero at concentrations exceeding 35 g/L. Thus, C. utilis has potential to recover dilute ethanol in the form of ethyl acetate.  相似文献   

4.
D Vraná 《Mikrobiologiia》1975,44(2):214-218
The effect of D2 (second stage) on the growth rate, the content of RNA, and the rate of its formation was studied during two-stage continuous cultivation of the yeast Candida utilis. At the same time, the effect of changes of D1 (first stage) on the properties of the yeast during the second stage was also investigated.  相似文献   

5.
Temperature adaptation in yeasts: the role of fatty acids   总被引:17,自引:0,他引:17  
Studies on the yeasts Candida oleophila, Candida utilis, Lipomyces starkeyi, Rhodosporidium toruloides and Saccharomyces cerevisiae revealed the existence of three different temperature adaptation responses involving changes in fatty acid composition. These conclusions were drawn by determining the growth rates, total cellular fatty acid content, fatty acid composition, degree of unsaturation, and the mean chain length of fatty acids over a range of growth temperatures. Within temperatures permitting growth, there were no changes in the major fatty acids of any of the yeasts, but the absolute amounts and relative compositions of the fatty acids did alter. In S. cerevisiae there were temperature-induced changes in the mean fatty acid chain length, whereas in R. toruloides there were changes in the degree of unsaturation. C. oleophila, C. utilis and L. starkeyi showed both responses, depending on whether the growth temperature was above or below 20-26 degrees C. Below 20-26 degrees C temperature-dependent changes were observed in the mean chain length whereas above 20-26 degrees C there were changes in the degree of unsaturation.  相似文献   

6.
The competition between the yeasts Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 for glucose was studied in sugar-limited chemostat cultures. Under aerobic conditions, C. utilis always successfully completed against S. cerevisiae. Only under anaerobic conditions did S. cerevisiae become the dominant species. The rationale behind these observations probably is that under aerobic glucose-limited conditions, high-affinity glucose/proton symporters are present in C. utilis, whereas in S. cerevisiae, glucose transport occurs via facilitated diffusion with low-affinity carriers. Our results explain the frequent occurrence of infections by Crabtree-negative yeasts during bakers' yeast production.  相似文献   

7.
A theoretical evaluation of growth yields of yeasts   总被引:12,自引:0,他引:12  
Growth yields of Saccharomyces cerevisiae and Candida utilis in carbon-limited chemostat cultures were evaluated. The yields on ethanol and acetate were much lower in S. cerevisiae, in line with earlier reports that site I phosphorylation is absent in this yeast. However, during aerobic growth on glucose both organisms had the same cell yield. This can be attributed to two factors: --S. cerevisiae had a lower protein content than C. utilis; --uptake of glucose by C. utilis requires energy whereas in S. cerevisiae it occurs via facilitated diffusion. Theoretical calculations showed that, as a result of these two factors, the ATP requirement for biomass formation in C. utilis is 35% higher than in S. cerevisiae (theoretical YATP values of 20.8 and 28.1, respectively). The experimental YATP for anaerobic growth of S. cerevisiae on glucose was 16 g biomass.mol ATP-1. In vivo P/O-ratios can be calculated for aerobic growth on ethanol and acetate, provided that the gap between the theoretical and experimental ATP requirements as observed for growth on glucose is taken into account. This was done in two ways: --via the assumption that the gap is independent of the growth substrate (i.e. a fixed amount of ATP bridges the difference between the theoretical and experimental values). --alternatively, on the assumption that the difference is a fraction of the total ATP expenditure, that is dependent on the substrate. Calculations of P/O-ratios for growth of both yeasts on glucose, ethanol, and acetate made clear that only by assuming a fixed difference between theoretical and experimental ATP requirements, the P/O-ratios are more or less independent of the growth substrate. These P/O-ratios are approximately 30% lower than the calculated mechanistic values.  相似文献   

8.
Aspergillus parasiticus RCMB 002001 (2) producing four types of aflatoxins B1, B2, G1, and G2 was used in this study as an aflatoxin-producer. Penicillium griseofulvum, P. urticae, Paecilomyces lilacinus, Trichoderma viride, Candida utilis, Saccharomyces cerevisiae as well as a non-toxigenic strain of Aspergillus flavus were found to be able to exhibit growth on aflatoxin B1-containing medium up to a concentration of 500 ppb. It was also found that several fungal strains exhibited the growth in co-culture with A. parasiticus, natural aflatoxins producer, and were able to decreased the total aflatoxin concentration, resulting in the highest inhibition percentage of 67.2% by T viride, followed by P. lilacinus, P. griseofulvum, S. cerevisiae, C. utilis, P. urticae, Rhizopus nigricans and Mucor rouxii with total aflatoxin inhibition percentage of 53.9, 52.4, 52, 51.7, 44, 38.2 and 35.4%, respectively. The separation of bioremediation products using GC/MS revealed that the toxins were degraded into furan moieties.  相似文献   

9.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

10.
Growth of Candida utilis and Saccharomyces cerevisiae in a medium supplemented with sulfur amino acids led to synthesis and accumulation of S-adenosylmethionine, accompanied by a reduction in the cell yield, an increased sensitivity of the cell wall to snail gut enzymes (Helix pomatia), as judged by spheroplast formation, and by a modification of the chemical composition of both the intact cells and their isolated walls. Walls of supplemented cultures of C. utilis were three times as sensitive to enzymatic digestion as walls from nonsupplemented cultures. In contrast to C. utilis, walls isolated from supplemented cultures of S. cerevisiae were digested slightly more rapidly by the purified snail extract than those from nonsupplemented cultures. Chemical modifications of the cell wall are interpreted to explain the ease with which cells from sulfur amino acid-supplemented cultures are converted to spheroplasts.  相似文献   

11.
A 3-isopropylmalate dehydrogenase (3-IMDH, EC 1.1.1.85) gene was cloned from a gene library of Candida utilis. One of the plasmids, pYKL30, could complement Escherichia coli leuB and Saccharomyces cerevisiae leu2 auxotrophs; a 2.2 kb HindIII fragment subcloned in pBR322 could still complement the leuB mutation. Southern hybridization confirmed that this fragment was derived from C. utilis. An open reading frame of 1089 bp that corresponded to a polypeptide of 363 amino acids, one residue shorter than the 3-IMDH of S. cerevisiae, was found in the cloned fragment. The homology between the 3-IMDHs of C. utilis and S. cerevisiae was 76.2% in nucleotides and 85.4% in amino acids. In contrast, the homology between the 3-IMDHs of C. utilis and Thermus thermophilus was much smaller and was restricted to some regions of the gene.  相似文献   

12.
A cyanide-insensitive and salicyl hydroxamic acid-sensitive respiration (CIR) was found in the yeast Pichia stipitis in contrast to Candida utilis, Pachysolen tannophilus, and Saccharomyces cerevisiae. During xylose utilization in the presence of either salicyl hydroxamic acid or cyanide, P. stipitis formed xylitol, arabitol, and ribitol. The existence of CIR is discussed in terms of a redox sink preventing xylitol formation in P. stipitis.  相似文献   

13.
Candida utilis cultivated under batch conditions in a synthetic medium with a mixture of different carbon sources utilized first D-glucose and then D-galactose, D-mannose, D-xylose, L-arabinose, ethanol and acetic acid. The effect of acetic acid was primarily a function of pH and the physiological state of the inoculum. At pH 4.5, acetic acid at a concentration of 1 g/l increased the specific growth rate, reduced time of cultivation and increased yield of the yeast dry weight. The yield from acetic acid was 61%. In the presence of a higher content of acetic acid (3--6 g/l) the yield was only 18--26%. The yield calculated only from monosaccharides increased but the yield with respect to total carbon sources was lower. The specific growth rate decreased as well. The addition of ethanol also resulted in an increase of the production and yield of the yeast dry weight but the cultivation time was prolonged. The simultaneous utilization of carbon sources of the studied mixture modelling a sulphite fermentation medium with ethanol is advantageous. However, due to physiology of the yeast, it is most suitable to cultivate a strain adapted to utilizable carbon sources in a continuous way, in the presence of their limiting concentrations in the cultivation medium.  相似文献   

14.
Levulinic acid, a competitive inhibitor of delta-aminolevulinic acid dehydratase, was used to inhibit cytochrome biosynthesis in growing yeast cells. In Saccharomyces cerevisiae the antimetabolite acts by inhibiting delta-aminolevulinic acid dehydratase in vivo, causing an accumulation of intracellular delta-aminolevulinic acid and simultaneous decreases in all classes of mitochondrial cytochromes. Changes in cellular cytochrome content with increasing levulinic acid concentration suggested the existence of different regulatory patterns in S. cerevisiae and Candida utilis. In C. utilis, cytochrome a.a3 formation is very resistant to the antimetabolite action of levulinic acid. In this aerobic yeast, cytochrome c+c1 is the most sensitive to levulinic acid, and cytochrome b exhibits intermediate sensitivity.  相似文献   

15.
Based on previous studies, Candida utilis pyruvate decarboxylase (PDC) proved to be a stable and high productivity enzyme for the production (R)-phenylacetylcarbinol (PAC), a pharmaceutical precursor. However, a portion of the substrate pyruvate was lost to by-product formation. To identify a source of PDC which might overcome this problem, strains of four yeasts -- C. utilis, Candida tropicalis, Saccharomyces cerevisiae and Kluyveromyces marxianus -- were investigated for their PDC biocatalytic properties. Biotransformations were conducted with benzaldehyde and pyruvate as substrates and three experimental systems were employed (in the order of increasing benzaldehyde concentrations): (I) aqueous (soluble benzaldehyde), (II) aqueous/benzaldehyde emulsion, and (III) aqueous/octanol-benzaldehyde emulsion. Although C. utilis PDC resulted in the highest concentrations of PAC and was the most stable enzyme, C. tropicalis PDC was associated with the lowest acetoin formation. For example, in system (III) the ratio of PAC over acetoin was 35 g g(-1) for C. tropicalis PDC and 9.2 g g(-1) for C. utilis PDC. The study thereby opens up the potential to design a PDC with both high productivity and high yield characteristics.  相似文献   

16.
在5 L发酵罐中,研究pH、搅拌转速和温度等环境条件对产朊假丝酵母CCTCC M209298联产发酵合成S-腺苷甲硫氨酸(SAM)和谷胱甘肽(GSH)的影响,发现酵母细胞生长、SAM和GSH合成各自需要最适的pH、搅拌转速和培养温度。以SAM和GSH联产量最大化为目标,获得了较为合适的联产发酵条件:pH 5.0,搅拌转速350 r/min,温度30℃。在此环境条件下,结合不低于35%的溶氧体积分数,分批培养产朊假丝酵母24 h,最终SAM和GSH联产产量可达到579.6 mg/L。  相似文献   

17.
Specific growth rate, specific rate of oxygen consumption calculated per unit cell mass and substrate consumption were followed during the (S + G2) phase of the cell cycle of Candida utilis, when the cell mass increase occurs due to bud growth. Scar-free cells and cells with one and more scars were investigated. Buds of the mother scar-bearing cells grew more slowly. Oxygen was used up at the same rate, whereas glucose was utilized more rapidly.  相似文献   

18.
Intracellular accumulation of zinc by Candida utilis NRRL-Y-7634 was mediated by an energy-and temperature-dependent, highly specific process exhibiting saturation kinetics. In zinc-supplemented medium, uptake occured only during the lad and late-exponential phases; this type of transport did not occur with zinc in bacteria nor with iron in either yeast or bacteria. Cells of C. utilis did not possess a zinc-efflux system; they could reduce their level of intracellular zinc only by dilution of the metal into daughter cells. Zinc-deficient organisms accumulated 12 times more zinc than did cells of the same culture age grown in zinc-supplemented medium. The varied, but experimentally reproducible levels of intracellular zinc that occured in response to the physiological and environmental parameters had no detectable effects on respiration, rate of growth, total cell yield, or cell viability. Neither the mechanism underlying the cyclic accumulation of sinc nor the function of such behaviour are understood.  相似文献   

19.
Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.  相似文献   

20.
Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号