首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gametophytic self-incompatibility (GSI) is an outcrossing mechanism in flowering plants that is genetically controlled by 2 separate genes located at the highly polymorphic S-locus, termed S-haplotype. This study characterizes a pollen part mutant of the S(1)-haplotype present in sour cherry (Rosaceae, Prunus cerasus L.) that contributes to the loss of GSI. Inheritance of S-haplotypes from reciprocal interspecific crosses between the self-compatible sour cherry cultivar Ujfehértói Fürt?s carrying the mutated S(1)-haplotype (S(1)'S(4)S(d)S(null)) and the self-incompatible sweet cherry (Prunus avium L.) cultivars carrying the wild-type S(1)-haplotype revealed that the mutated S(1)-haplotype confers unilateral incompatibility with a functional pistil component and a nonfunctional pollen component. The altered sour cherry S(1)-haplotype pollen part mutant, termed S(1)', contains a 615-bp Ds-like element within the S(1)-haplotype-specific F-box protein gene (SFB(1)'). This insertion generates a premature in-frame stop codon that would result in a putative truncated SFB(1) containing only 75 of the 375 amino acids present in the wild-type SFB(1). S(1)' along with 2 other previously characterized Prunus S-haplotype mutants, S(f) and S(6m), illustrate that mobile element insertion is an evolutionary force contributing to the breakdown of GSI.  相似文献   

3.
To assure self-compatibility in the progenies, three different crosses were conducted for the first time in an almond breeding programme: self-pollination (266 descendants from 30 families), crosses between parents sharing an S-allele (108 descendants from five families) and crosses with homozygous self-compatible parents (62 descendants from five families). Depending on the cross, self-compatibility in the progenies was determined by observing pollen tube growth (by means of fluorescence microscopy), stylar S-RNases analysis or allele-specific PCR. The results obtained fit with the accepted hypothesis of inheritance of self-compatibility and the three crossing strategies used ensured 100% of self-compatible descendants. These strategies increase the efficiency of the breeding programme and avoid the laborious task of evaluating this characteristic. From the breeding point of view, self-fertilisation and crosses between relatives tend to produce inbreeding. Furthermore, these methods reduce the possibilities of choosing the parental combination. The use of homozygous self-compatible parents does not have any of these disadvantages. As far as we know, this is the first time that allele-specific PCR has been used for early selection of self-compatible seedlings. The advantages and disadvantages of the three methodologies used to determine self-compatibility are discussed.  相似文献   

4.
In China, its centre of origin, apricot (Prunus armeniaca) is self-incompatible. However, most European cultivars are self-compatible. In most cases, self-compatibility is a result of a loss-of-function mutation within the pollen gene (SFB) in the SC haplotype. Controlled pollinations performed in this work revealed that the cross 'Ceglédi óriás' (S8S9)x'Ceglédi arany' (SCS9) set well, as expected, but the reciprocal cross did not. Apricot S8, S9 and SC haplotypes were analysed using a multilevel approach including fruit set evaluation, pollen tube growth analysis, RNase activity assays, polymerase chain reaction (PCR) analysis and DNA sequencing of the S-RNase and SFB alleles. SFB8 was revealed to be the first known progenitor allele of a naturally occurring self-compatibility allele in Prunus, and consequently SC=The first intron of SC-RNase is a phase one intron, indicating its more recent evolutionary origin compared with the second intron. Sequence analysis of different cultivars revealed that more single nucleotide polymorphisms accumulated in SC-RNase than in SFBC. New methods were designed to allow high-throughput analysis of S genotypes of apricot cultivars and selections. S-RNase sequence data from various sources helped to elucidate the putative origin and dissemination of self-compatibility in apricot conferred by the SC haplotype.  相似文献   

5.
D. G. Lloyd 《Genetica》1967,38(1):227-242
Six plants of a self-incompatible population ofLeavenworthia çrassa were grown from seed collected in nature and cross-pollinated in all combinations. The incompatibility relationships between sibs were determined in eleven of the F1 families. A one-locus sporophytic incompatibility system was established. None of the parents was homozygous at the S locus. At least five, and possibly all six, of the parents did not share an S allele. Only one pair of alleles was shown to have different interactions in the pollen and stigmata. The identity and expression of the S alleles were determined in six families. Eight pairs of alleles were independently expressed in both the pollen grains and the stigmata. Sixteen pairs of alleles showed dominance of one allele over the other in the pollen grains or the stigmata or both.F1 plants of two crosses between different self-incompatible races were self-incompatible. F1 plants of six crosses between self-incompatible and self-compatible races were self-incompatible; in five of the families, the frequency of pseudo-compatibility was higher than in the self-incompatible parent. Self-incompatible hybrids from a cross between a self-incompatible and a self-compatible population provide a method for rapidly determining allelic interactions in plants with a sporophytic incompatibility system.The research was carried out at the Biological Laboratories, Harvard University, Cambridge, Massachusetts, U.S.A.  相似文献   

6.
Loss of pollen-S function in Prunus self-compatible mutants has recently been associated with deletions or insertions in S-haplotype-specific F-box (SFB) genes. We have studied two self-compatible cultivars of apricot (Prunus armeniaca), Currot (S(C)S(C)) and Canino (S(2)S(C)), sharing the naturally occurring self-compatible (S(C))-haplotype. Sequence analysis showed that whereas the S(C)-RNase is unaltered, a 358-bp insertion is found in the SFB(C) gene, resulting in the expression of a truncated protein. The alteration of this gene is associated with self-incompatibility (SI) breakdown, supporting previous evidence that points to SFB being the pollen-S gene of the Prunus SI S-locus. On the other hand, PCR analysis of progenies derived from Canino showed that pollen grains carrying the S(2)-haplotype were also able to overcome the incompatibility barrier. However, alterations in the SFB(2) gene or evidence of pollen-S duplications were not detected. A new class of F-box genes encoding a previously uncharacterized protein with high sequence similarity (approximately 62%) to Prunus SFB proteins was identified in this work, but the available data rules them out of producing S-heteroallelic pollen and thus the cause of the pollen-part mutation. These results suggest that cv Canino has an additional mutation, not linked to the S-locus, which causes a loss of pollen-S activity when present in pollen. As a whole, these findings support the proposal that the S-locus products besides other S-locus independent factors are required for gametophytic SI in Prunus.  相似文献   

7.
Self-compatibility in a naturally self-incompatible species like sweet cherry is a highly interesting trait for breeding purposes and a powerful tool with which to investigate the basis of the self-incompatible reaction in gametophytic systems. However, natural self-compatibility in sweet cherry is a very rare phenomenon. Cristobalina is a local Spanish sweet cherry cultivar that has proven to be spontaneously self-compatible. In this work, the nature of the self-compatibility in Cristobalina has been studied using genetic and molecular approaches. Pollination studies and microscopic observations of pollen tube growth were carried out to confirm the self-compatible character and the results obtained indicate that self-compatibility is caused by a failure of the pollen and not the style factor. Polymerase chain reaction (PCR) analysis of progenies derived from Cristobalina revealed that self-compatibility in this genotype is not related uniquely to one of the two pollen S alleles, but that pollen grains carrying either of the two haplotypes can overcome the incompatibility barrier. Moreover, PCR analysis and microscopic observation of pollen tube growth in progeny derived from Cristobalina also confirmed that the self-compatible descendants can carry either of the two S haplotypes of their progenitor. Isolation and sequencing of the style S-RNases and pollen SFBs revealed that the DNA sequences of these factors are the same as those described in other self-incompatible sweet cherry cultivars with the same S alleles. Possible mechanisms to explain self-compatibility in Cristobalina are discussed.  相似文献   

8.
Huang SX  Wu HQ  Li YR  Wu J  Zhang SJ  Heng W  Zhang SL 《Plant cell reports》2008,27(6):1075-1085
Self-incompatibility (SI) has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility (GSI). In the present study, four PpsS-haplotypes (Prunus pseudocerasus S-haplotypes) comprising at least two genes, i.e., PpsS-RNase (P. pseudocerasus S-RNase) and PpsSFB (P. pseudocerasus S-haplotype-specific F-box) have been successfully isolated in tetraploid P. pseudocerasus Lindl. CV. Nanjing Chuisi ("NC") which exhibited self-compatibility (SC), and its S-genotype was determined as S-1/S-3'/S-5/S-7. These PpsS-RNases, which were expressed exclusively in style, shared the typical structural features with S-RNases from other Prunus species exhibiting GSI. All PpsSFBs showed similar structure characteristics of SFBs from other Prunus species, and matched with the necessary conditions for pollen S-determinant. No mutations leading to dysfunction of S-haplotype were found in their full-length c-DNA sequences, except for PpsS-3'-haplotype which was not amplified by PCR. These four S-haplotypes complied with tetrasomic inheritance. Diploid pollen grains with S-genotypes S-7/S-1, S-7/S-5 and S-1/S-5 can grow the full length of the style after self-pollination, while pollen grains with S-3'/S-7, S-3'/S-1 and S-3'/S-5 cannot. These results suggest that PpsS-haplotypes-1, -5 and -7 are functional, and that competitive interaction between two of them confer self-compatibility on cultivar "NC". Furthermore, in terms of recognition specificity, diploid pollen grains carrying PpsS-3'-haplotype are equal to monoploid pollen grains carrying the other functional S-haplotype.  相似文献   

9.
In cruciferous plants, self-pollination is prevented by the action of genes situated at the self-incompatibility locus or S-locus. The self-incompatibility reaction is associated with expression of stigma glycoproteins encoded by the S-locus glycoprotein (SLG) gene. Only a few cases of self-compatible plants derived from self-incompatible lines in the crucifer Brassica have been reported. In these cases, self-compatibility was generally ascribed to the action of single genes unlinked to the S-locus. In contrast, we report here a line of Brassica oleracea var acephala with a self-compatible phenotype linked to the S-locus. By means of both biochemical and immunochemical analyses, we showed that this self-compatible (Sc) line nonetheless possesses stigmatic SLGs (SLG-Sc) that are expressed with a similar spatial and temporal pattern to that described for the SLGs of self-incompatible Brassica plants. Moreover, the SLG-Sc products segregate with the self-compatibility phenotype in F2 progeny, suggesting that changes at the S-locus may be responsible for the occurrence of the self-compatibility character. A cDNA clone encoding the SLG-Sc product was isolated, and the deduced amino acid sequence showed this glycoprotein to be highly homologous to the pollen recessive S2 allele glycoprotein. Hence, self-compatibility in this Brassica Sc line correlates with the expression of a pollen recessive-like S allele in the stigma.  相似文献   

10.
Pandey , K.K. (Crop Res. Div., D.S. & I.R., Lincoln, Christchurch, New Zealand.) Interspecific incompatibility in Solanum species. Amer. Jour. Bot. 49(8): 874–882. Illus. 1962.—A diallel cross involving 11 self-incompatible and 3 self-compatible species of Solanum was made to study the genetic basis of interspecific incompatibility. Interspecific incompatibility was not limited to crosses in which a self-compatible species was used as the male parent onto a self-incompatible species (unilateral incompatibility). A number of crosses between self-incompatible species were incompatible. In one cross, Q vernei X verrucosum, a self-compatible species was successful as a pollen parent with a self-incompatible species. Unlike other hybrids between self-compatible and self-incompatible species, which are self-incompatible, these F1 hybrids were self-fertile, and cross-fertile among themselves and with both parents. The self-fertile S. polyadenium was cross-incompatible as a female as well as a male parent with all other species. It is suggested that the unilateral incompatibility is a property of the allele SC which originated as a consequence of one kind of breakdown of the SI gene; the SC allele produces “bare” pollen growth substances which are inactivated in an incompatible style. It is proposed that the failure of the principle of unilateral interspecific incompatibility in solanaceous species may be due to the action of alleles at the second incompatibility locus revealed in certain Mexican species. It is assumed that the South American species are selected intraspecifically only for the action of S alleles but that in certain interspecific crosses and rarely in intraspecific crosses the alleles at the second locus may be expressed, thus interfering with the usual action of S alleles. The F1 hybrids Q verrucosum (self-fertile) X simplicifolium (self-sterile) were self-incompatible at the tetraploid as well as the diploid level, and their cross-compatibility behavior was consistent with the expected activity of the SC and SI alleles of the 2 parents respectively.  相似文献   

11.
'Kronio' is a Sicilian cultivar of sweet cherry (Prunus avium), nominally with the incompatibility genotype S(5)S(6), that is reported to be naturally self-compatible. In this work the cause of its self-compatibility was investigated. Test selfing confirmed self-compatibility and provided embryos for analysis; PCR with consensus primers designed to amplify S-RNase and SFB alleles showed that the embryos were of two types, S(5)S(5) and S(5)S(6), indicating that S(6) pollen failed, but S(5) succeeded, perhaps because of a mutation in the pollen or stylar component. Stylar RNase analysis indicated active S-RNases for both S(5) and S(6). The S-RNase alleles were cloned and sequenced; and sequences encode functional proteins. Cloning and sequencing of SFB alleles showed that S(6) was normal but S(5) had a premature stop codon upstream of the variable region HVa resulting in a truncated protein. Therefore, the self-compatibility can be attributed to a pollen-part mutation of S(5), designated S(5)', the first reported case of breakdown of self-incompatibility in diploid sweet cherry caused by a natural mutation at the S-locus. The second intron of the S-RNase associated with S(5)' contained a microsatellite smaller than that associated with S(5); primers designed to amplify across this microsatellite effectively distinguished S(5) from S(5)'. Analysis of some other Sicilian cherries with these primers indicated that S(5)' is also present in the Sicilian cultivar 'Maiolina a Rappu', and this proved to be self-compatible.  相似文献   

12.
Self-compatibility segregation was assessed in two successive backcross progenies originating from an interspecific cross between Coffea canephora (self-incompatible) and Coffea heterocalyx (self-compatible). After self- and cross-pollination, pollen tube behaviour in styles was observed under ultraviolet fluorescence microscopy and fruit-set was determined at harvesting time. Segregation ratios in the two progenies were consistent with monofactorial control of self-compatibility. Self-compatible plants exhibited higher fruit-set than self-incompatible ones in open-pollination conditions. Segregation of AFLP markers was scored in the first backcross progeny. By molecular linkage analysis, the S locus could be mapped to a short linkage group.  相似文献   

13.
Apricot (Prunus armeniaca L.) cultivars originated in China display a typical S-RNase-based gametophytic self-incompatibility (GSI). ‘Katy’, a natural self-compatible cultivar belonging to the European ecotype group, was used as a useful material for breeding new cultivars with high frequency of self-compatibility by hybridizing with Chinese native cultivars. In this work, the pollen-S genes (S-haplotype-specific F-box gene, or SFB gene) of ‘Katy’ were first identified as SFB 1 and SFB 8, and the S-genotype was determined as S 1 S 8. Genetic analysis of ‘Katy’ progenies under controlled pollination revealed that the stylar S1-RNase and S8-RNase have a normal function in rejecting wild-type pollen with the same S-haplotype, while the pollen grains carrying either the SFB 1 or the SFB 8 gene are both able to overcome the incompatibility barrier. However, the observed segregation ratios of the S-genotype did not fit the expected ratios under the assumption that the pollen-part mutations are linked to the S-locus. Moreover, alterations in the SFB 1 and SFB 8 genes and pollen-S duplications were not detected. These results indicated that the breakdown of SI in ‘Katy’ occurred in pollen, and other factors not linked to the S-locus, which caused a loss of pollen S-activity. These findings support a hypothesis that modifying factors other than the S-locus are required for GSI in apricot.  相似文献   

14.
15.
J F Golz  V Su  A E Clarke  E Newbigin 《Genetics》1999,152(3):1123-1135
Mutations affecting the self-incompatibility response of Nicotiana alata were generated by irradiation. Mutants in the M1 generation were selected on the basis of pollen tube growth through an otherwise incompatible pistil. Twelve of the 18 M1 plants obtained from the mutagenesis screen were self-compatible. Eleven self-compatible plants had mutations affecting only the pollen function of the S locus (pollen-part mutants). The remaining self-compatible plant had a mutation affecting only the style function of the S locus (style-part mutant). Cytological examination of the pollen-part mutant plants revealed that 8 had an extra chromosome (2n + 1) and 3 did not. The pollen-part mutation in 7 M1 plants was followed in a series of crosses. DNA blot analysis using probes for S-RNase genes (encoding the style function of the S locus) indicated that the pollen-part mutation was associated with an extra S allele in 4 M1 plants. In 3 of these plants, the extra S allele was located on the additional chromosome. There was no evidence of an extra S allele in the 3 remaining M1 plants. The breakdown of self-incompatibility in plants with an extra S allele is discussed with reference to current models of the molecular basis of self-incompatibility.  相似文献   

16.
Six almond progenies, each the product of a cross between a self-compatible and a self-incompatible parent, were analysed for stylar ribonucleases. Proteins were extracted and separated using non-equilibrium pH gradient electrofocusing (NEPHGE), and the gels were stained for ribonuclease activity. Most seedlings showed either two principal bands, interpreted as corresponding to two incompatibility alleles, or a single band. The seedlings were also bagged in the field at flowering time to determine fruit set after selfing, and some were also examined for the growth of pollen-tubes in selfed styles using UV fluorescence microscopy. With very few exceptions, those seedlings showing single-banded zymograms were found to be self-compatible according to field and microscope studies, and those with two bands were found to be self-incompatible. We conclude that the allele for self-compatibility in almond does not code for ribonuclease activity and that the ribonuclease isoenzyme assay is a convenient technique for predicting self-compatibility in segregating progenies. A novel band in two derivatives of ’Ferrastar’ was ascribed to a new incompatibility allele, S 10 . Received: 19 January 1999 / Accepted: 30 January 1999  相似文献   

17.
A series of crosses between a naturally-occurring self-compatible accession ofLycopersicon peruvianum and a closely-related self-incompatible accession were used to demonstrate that the mutation to self-compatibility is located at the S-locus. Progeny of the crosses contain abundant style proteins of about 30 kDa that segregate with the S6and S7-alleles from the SI parent and the Sc-allele from the SC parent. The S6and S7-associated proteins have ribonuclease activity whereas the Sc-associated protein is not an active ribonuclease. This finding indicates that S-RNases are determinants of self-incompatibility in the style and that the ribonuclease activity is essential for their function.  相似文献   

18.
黄牡丹远缘杂交后代花粉粒特征   总被引:1,自引:0,他引:1  
赵娜  石颜通  袁涛 《广西植物》2016,36(3):280-288
为揭示牡丹远缘杂交后代花粉粒的特征,测定了以肉质花盘亚组黄牡丹为母本,革质花盘亚组栽培品种‘日月锦’、‘层中笑’、‘百园红霞’等为父本的10个远缘杂交组合,共计11个亲本、25个后代的花粉畸形率和萌发率,用扫描电镜观察了花粉粒形态,同时也观察了花和叶的形态特征。结果表明:与双亲相比,杂交后代的花粉量极少,花粉粒萌发率极低,畸形率极高,畸形花粉粒扭曲、破碎或粘成团块状。25个杂交后代的花粉粒均为超长球形,具三拟孔沟,与母本黄牡丹和绝大多数父本一致;但杂交后代的花粉粒小于双亲,外壁纹饰类型受父本影响较大,为小穴状、穴状、网状和粗网状。结合前人的观察结果,25个杂交后代中15个与父本的纹饰类型一致,与母本纹饰类型一致的杂交后代仅有6个,与父母本纹饰类型均不同的杂交后代有4个。形态观察发现杂交后代具有父本的花盘革质、心皮被毛的特征,而小叶分裂程度较母本减轻但小叶裂片较母本加宽;花径则介于父母本之间。其中,心皮被毛、小叶裂片加宽可以结合花粉粒特征作为以黄牡丹为母本的远缘杂交后代的形态识别标记。  相似文献   

19.
Yan Zhuang and Jin Zhui are spontaneous bud mutants of Chinese pear ( Pyrus bretschneideri Rehd.) from Ya Li. Both fruit set rate and seed number after self-pollination, together with pollen tube growth, prove that Yan Zhuang and Jin Zhui are self-compatible. The fruit set rate and seed number after cross-pollination suggest that the self-compatibility of Yan Zhuang and Jin Zhui may be due to natural mutations of the stylar S allele and pollen S allele, respectively. PCR amplification of the S-RNase gene in self-pollinated progeny of Yan Zhuang and Jin Zhui show that they contain point mutations in the stylar S21 allele and pollen S34 allele, respectively. The cDNA sequence of the Yan Zhuang stylar S-RNase gene revealed that the 182nd nucleotide of the S21-RNase (cDNA) sequence had been substituted resulting in a Gly to Val mutation, and this might affect the stability of the S-RNase. In addition, Western blotting showed that one Yan Zhuang stylar S-RNase was absent and the expression level of another S-RNase protein was decreased compared to Ya Li. Therefore, we suggest that the self-compatibility of Yan Zhuang is caused by a point mutation in an S21-RNase nucleotide.  相似文献   

20.
We confirmed functional dioecy of Withania aristata via field and greenhouse studies. Male flowers are significantly larger. Female flowers bear stamens with no pollen; males bear 220?000 grains. Stigmata of male flowers senesce in buds. Anatomical observations confirm more ovules in females and an ovarian nectary in both sexes. We detected nectar in female flowers in the greenhouse but found no nectar in males. Thus, males offer pollen and females nectar. Females bear large numbers of fruits and, infrequently, male plants bear few significantly smaller fruits with few seeds. Outcrosses of females (self crosses impossible without pollen) yielded fruits in young buds, older buds, and open flowers. Self crosses of male flowers succeeded only with very young buds. Although functionally dioecious, this species manifests self-compatibility; however, no fruits are produced autonomously. Bee species (Lassioglossum, Amegilla, Apis) visit flowers and mature buds. Bud visits in which bees force petal tips apart, coupled with self-compatibility, may explain infrequent fruit on males. Thus, dioecy in W. aristata seems to have evolved from self-compatible ancestors, that leaky dioecy may have been favored during colonization, and, that despite autogamy and a low floral visition rate, this endemic enjoys a high rate of reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号