首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The transesterification activity, autolysis, thermal stability and conformation of subtilisin Carlsberg, made soluble in dioxane by covalent linking to methoxypoly(ethylene glycol) (PEG), were investigated as a function of the concentration of water in the medium. Electrospray mass spectrometry showed that the modified enzyme preparation was a mixture of proteins containing from 2 to 5 covalently linked PEG chains per subtilisin molecule. PEG-subtilisin catalyzed transesterification between vinyl butyrate and 1-hexanol was optimum at 0.55 MH(2)O, while hydrolysis prevailed above 2 MH(2)O. There was a decrease in the overall enzyme activity with increasing water concentration because of autolysis and denaturation of the enzyme. Subtilisin powder and celite-immobilized subtilisin were more stable and less susceptible to autolysis than the PEG-modified enzyme. Circular dichroism and intrinsic protein-fluorescence studies showed that the conformation of PEG-subtilisin did not change as a function of water concentrations between 0 and 9 M. The K(m,app) value of PEG-subtilisin for 1-hexanol was highly influenced by water, which behaved as a competitive inhibitor in the transesterification reaction with an affinity for the enzyme similar to that of the alcohol. The K(m,app) for the acylating agent was not significantly modified by water. Lyoprotectants such as sorbitol and free PEG did not influence the activity of PEG-subtilisin but notably increased the activity of subtilisin powder and celite-immobilized subtilisin. The addition of 1.7-5.5 M water, however, rendered enzyme preparations containing no additives as active as those containing the lyoprotectants. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 50-57, 1997.  相似文献   

2.
Chymotrypsin modified with polyethylene glycol was successfully used for peptide synthesis in organic solvents. The benzene-soluble modified enzyme readily catalyzed both aminolysis of N-benzoyl-L-tyrosine p-nitroanilide and synthesis of N-benzoyl-L-tyrosine butylamide in the presence of trace amounts of water. A quantitative reaction was obtained when either hydrophobic or bulky amides of L- as well as D-amino acids were used as acceptor nucleophiles, while almost no reaction occurred with free amino acids or ester derivatives. The acceptor nucleophile specificity of modified chymotrypsin as a catalyst in the formation of both amide and peptide bonds in organic solvents was quite comparable to that in aqueous solution as well as to that of the leaving group in hydrolysis reactions. By contrast, the substrate specificity of modified chymotrypsin in organic solvents was different from that in water since arginine and lysine esters were found to be as effective as aromatic amino acids to form the acyl-enzyme with subsequent synthesis of a peptide bond.  相似文献   

3.
alpha-Chymotrypsin deposited on Celite was used to catalyse peptide synthesis reactions between N-protected amino acid esters and leucine amide in organic media with low water content. The influence of the solvent and the thermodynamic water activity on the reaction kinetics was studied. The substrate specificity in the reactions was shown to be a combination of the substrate specificity of the enzyme in aqueous media and the influence of the solvents. The magnitude of the solvent effects differed greatly depending on the substrates used. In hydrophobic solvents high reaction rates were observed and the competing hydrolysis of the ester substrate occurred to only a minor extent. Reactions occurred at water activities as low as 0.11, but the rate constants increased with increasing water activity and were about two orders of magnitude higher at the highest water activity tested (0.97).  相似文献   

4.
Enzymatic synthesis of l-ascorbyl linoleate in organic media   总被引:1,自引:0,他引:1  
A novel l-ascorbyl fatty acid ester, l-ascorbyl linoleate was successfully prepared by enzymatic esterification and transesterification in a non-aqueous medium using immobilized lipase as biocatalyst. Changes in enzymatic activity and product yield were studied for the following variable: the nature of the fatty acid, the fatty acid concentration and water content. The yield of synthesis for the C18 unsaturated fatty acids were higher than for the C18 saturated fatty acid. Initial enzyme concentration does not affect the equilibrium of the reaction. And the product yield (33.5%) in the transesterification was higher than that of the esterification (21.8%) at a high-substrate concentration 0.3 M. The medium water content was found to have a distinct influence on the l-ascorbyl linoleate synthesis.These authors contributed equally to the article.  相似文献   

5.
Enzymes are attractive catalysts for the production of optically active compounds in organic solvents. However, their often low catalytic activity in such applications hampers their practical use. To overcome this, we investigated the effectiveness of the covalent modification of alpha-chymotrypsin with methoxy poly(ethylene glycol) (PEG) with a Mw of 5,000 to enhance its activity. The model transesterification reaction between sec-phenethyl alcohol and vinyl butyrate in various neat dry organic solvents and at a controlled water activity of 0.008 in two solvents was employed to measure the effect of PEGylation on activity and enantioselectivity. Synthesis conditions were varied to obtain various conjugates with average molar ratios of PEG-to-chymotrypsin ranging from ca. 1 to 7. While the enantioselectivity increased only modestly from ca. 4.4 to 6.1 when averaging results in all solvents, PEG was very efficient in increasing the activity of alpha-chymotrypsin up to more than 400-fold compared to that of the powder lyophilized from buffer alone. The activity increase was more pronounced in apolar than in polar organic solvents and also depended on the amount of PEG bound to the enzyme. For example, the activity of the modified enzyme towards the most reactive "S" enantiomer in octane increased 440-fold but increasing the molar ratio of PEG-to-enzyme from 1.1 to 7.1 resulted in a more than twofold decrease in enzyme activity. Controlling the water activity did not prevent the drop in activity. To investigate the possible origin of the activity changes, Fourier transform infrared (FTIR) spectroscopy experiments were conducted. It was found that PEGylation reduced lyophilization-induced structural perturbations, but exposure to the organic solvents caused structural perturbations. These perturbations were more pronounced in polar than in apolar solvents. The pronounced activity drop in polar solvents at increasing PEG-modification levels correlated with an increasing level of solvent-induced structural perturbations. This correlation was less pronounced in apolar solvents where both, activity drop and structural perturbations, were less pronounced at increasing PEGylation levels. In summary, PEG-modified alpha-chymotrypsin might be an interesting system to catalyze reactions, particularly in apolar organic solvents.  相似文献   

6.
Thermolysin-catalyzed peptide synthesis using N-benzyloxycarbonyl)-l-phenylalanine (Z-Phe) and l-phenylalanine methyl ester (Phe-OMe) as substrates was done mainly in a water-organic one phase solvent system. The organic solvent content used was less than the saturation concentration in buffer. With organic solvents with high log P values, the enzymatic activity increased as the organic solvent content increased; but further increases in the organic solvent content decreased the enzymatic activity, showing an “organic activity” profile. On the other hand, with organic solvents of low log P values, the enzymatic reaction was inhibited even by the initial addition of organic solvents. When a correlation between maximum activities and logP values or Hildebrand solubility parameters was investigated, a linear correlation was obtained among the same category of organic solvents, but not between categories. This suggests that the direct effect of organic solvents on the microenvironment of the enzyme largely depends on the molecular structure of the solvents.  相似文献   

7.
Microorganisms capable of cleaving the urethane bond of t-butoxycarbonyl (Boc) amino acids in a whole-cell reaction were screened among stock cultures, and Corynebacterium aquaticum IFO12154 was the most promising. The conversion of Boc-Ala to Ala was stimulated by CoSO4 in the medium and reaction mixture. The optimum whole-cell concentration was 25 mg lyophilized cells/ml. Boc-l-Met was the best substrate for this reaction, and other Boc-L-amino acids, as well as benzyloxycarbonyl-l-amino acids with hydrophobic residues, were also good substrates. Boc-d- and Z-d-amino acids were inert. When the reactions had proceeded for 24 h with each substrate at 10 mM, the molar conversion rates from Boc-l-, dl- and d-Met were 100%, 50%, and 0% respectively. From 150 mM Boc-l-Met, 143 mM l-Met was formed at a molar yield of 95.3%. Received: 3 September 1996 / Received last revision: 7 April 1997 / Accepted: 19 April 1997  相似文献   

8.
Subtilisin Carlsberg, an alkaline protease from Bacillus licheniformis, was modified with polyoxyethylene (PEG) or aerosol-OT (AOT), and the solubility, conformation, and catalytic activity of the modified subtilisins in some organic media were compared under the same conditions. The solubility of modified subtilisins depended on the solubility of the modifier. On the other hand, the conformational changes depended on the solubility, rather than the property, of the modifier. When the modified subtilisin was dissolved in water-miscible polar solvents such as dimethylsulfoxide, acetonitrile, and tetrahydrofuran, significant conformational changes occurred. When modified subtilisin was dissolved in water-immiscible organic solvents, such as isooctane and benzene, the solvent did not induce significant conformational changes. The catalytic activity in the transesterification reaction of the N-acetyl-L-phenylalanine ethylester of the modified subtilisin in organic solvents was higher than that of native subtilisin. The high activity of modified subtilisin was thought to be due to a homogeneous reaction by the dissolved enzymes.  相似文献   

9.
The activity of different lipase (from Pseudomonas cepacia) forms, such as crude powder (crude PC), purified and lyophilized with PEG (PEG + PC), covalently linked to PEG (PEG-PC), cross-linked enzyme crystals (CLEC-PC), and immobilized in Sol-Gel-AK (Sol-Gel-AK-PC) was determined, at various water activities (aw), in carbon tetrachloride, benzene and 1,4-dioxane. The reaction of vinyl butyrate with 1-octanol was employed as a model and both transesterification (formation of 1-octyl butyrate) and hydrolysis (formation of butyric acid from vinyl butyrate) rates were determined. Both rates depended on the lipase form, solvent employed, and aw value. Hydrolysis rates always increased as a function of aw, while the optimum of aw for transesterification depended on the enzyme form and nature of the solvent. At proper aw, some lipase forms such as PEG + PC, PEG-PC, and Sol-Gel-AK-PC had a total activity in organic solvents (transesterification plus hydrolysis) which was close to (39 and 48%) or even higher than (130%) that displayed by the same amount of lipase protein in the hydrolysis of tributyrin-one of the substrates most commonly used as standard for the assay of lipase activity-in aqueous buffer. Instead, CLEC-PC and crude PC were much less active in organic solvents (2 and 12%) than in buffer. The results suggest that enzyme dispersion and/or proper enzyme conformation (favored by interaction with PEG or the hydrophobic Sol-Gel-AK matrix) are essential for the expression of high lipase activity in organic media.  相似文献   

10.
An aminopeptidase that has peptide bond formation activity was identified in the cell-free extract of carpophore of Pleurotus eryngii. The enzyme, redesignated as eryngase, was purified for homogeneity and characterized. Eryngase had a molecular mass of approximately 79 kDa. It showed somewhat high stability with respect to temperature and pH; it was inhibited by iodoacetate. Among hydrolytic activities toward aminoacyl-p-nitroanilides (aminoacyl-pNAs), eryngase mainly hydrolyzed hydrophobic l-aminoacyl-pNAs and exhibited little activity toward d-Ala-pNA and d-Leu-pNA. In terms of peptide bond formation activity, eryngase used various aminoacyl derivatives as acyl donors and acceptors. The products were all dipeptidyl derivatives. Investigation of time dependence on peptide synthesis revealed that some peptides that are not recognized as substrates for hydrolytic activity of eryngase could become good targets for synthesis. Furthermore, eryngase has produced opioid dipeptides––l-kyotorphin (l-Tyr-l-Arg) and d-kyotorphin (l-Tyr-d-Arg)––using l-Tyr-NH2 and d- and l-Arg-methyl ester respectively as an acyl donor and acceptor. Yield evaluation of kyotorphin synthesis indicated that the conversion ratio of substrate to kyotorphin was moderate: the value was estimated as greater than 20%.  相似文献   

11.
In Nocardia sp. 239 d-phenylalanine is converted into l-phenylalanine by an inducible amino acid racemase. The further catabolism of this amino acid involves an NAD-dependent l-phenylalanine dehydrogenase. This enzyme was detected only in cells grown on l- or d-phenylalanine and in batch cultures highest activities were obtained at relatively low amino acid concentrations in the medium. The presence of additional carbon- or nitrogen sources invariably resulted in decreased enzyme levels. From experiments with phenylalanine-limited continuous cultures it appeared that the rate of synthesis of the enzyme increased with increasing growth rates. The regulation of phenylalanine dehydrogenase synthesis was studied in more detail during growth of the organism on mixtures of methanol and l-phenylalanine. Highest rates of l-phenylalanine dehydrogenase production were observed with increasing ratios of l-phenylalanine/methanol in the feed of chemostat cultures. Characteristic properties of the enzyme were investigated following its (partial) purification from l- and d-phenylalanine-grown cells. This resulted in the isolation of enzymes with identical properties. The native enzyme had a molecular weight of 42 000 and consisted of a single subunit; it showed activity with l-phenylalanine, phenylpyruvate, 4-hydroxyphenyl-pyruvate, indole-3-pyruvate and -ketoisocaproate, but not with imidazolepyruvate, d-phenylalanine and other l-amino acids tested. Maximum activities with phenylpyruvate (310 mol min-1 mg-1 of purified protein) were observed at pH 10 and 53°C. Sorbitol and glycerol stabilized the enzyme.Abbreviations RuMP ribulose monophosphate - HPS hexulose-6-phosphate synthase - HPT hexulose-6-phosphate isomerase - FPLC fast protein liquid chromatography  相似文献   

12.
Trypsin and alpha-chymotrypsin were immobilized to alumina-phosphocolamine complex, activated by glutaraldehyde. The immobilized enzymes show a great stability toward organic solvents miscible or immiscible with water. In the presence of a low concentration of water, the immobilized enzymes catalyzed transesterification reactions as well as peptide synthesis. The synthesized peptides were stable toward the immobilized enzymes.  相似文献   

13.
PEG修饰的辣根过氧化物酶及其在非水介质中的性质   总被引:3,自引:0,他引:3  
酶的化学修饰可以明显提高酶在有机相中的活力。通过氧化过氧化物酶(HRP)的糖链后引入氨基再连接甲氧基聚乙醇(PEG)5000和在酶的肽链上连接PEG5000,发现HRP多肽链上修饰后的酶在水相中的活力几乎没有变化,但通过氧化糖链连接PEG的酶在水相中的活力下降近2倍。在甲苯及二氧六环含量较高的体系中,修和均呈上升趋势。特别在甲苯体系中两种修饰酶活力都比未经修饰的酶提高了近2倍。稳定性研究表明,不论  相似文献   

14.
Addition of small amounts of calcium ion markedly accelerated the transesterification of N-acetyl-l-tyrosine methyl ester to its ethyl ester by the catalysis of α-chymotrypsin in organic solvents. Maximum increase of the reaction rate was about 12-fold in the presence of 25 μm of calcium ion in ethanol. The rate increase was strongly dependent on calcium ion concentration and nature of organic solvents. Esterification of N-acetyl-l-tyrosine and hydrolysis of N-acetyl-l-tyrosine ethyl ester by α-chymotrypsin in organic solvents were also accelerated by calcium ion. The reactions obeyed Michaelis–Menten kinetics, and the acceleration of the reactions was due to the increase in kcat.  相似文献   

15.
Arima J  Kono M  Kita M  Mori N 《Biotechnology letters》2012,34(6):1093-1099
l-Aspartyl l-amino acid methyl ester was synthesized using a mutant of a thermostable leucine aminopeptidase from Streptomyces cinnamoneus, D198 K SSAP, obtained in previously. A peptide of high-intensity sweetener, l-aspartyl-l-phenylalanine methyl ester, was selected as a model for demonstrating the synthesis of l-aspartyl l-amino acid methyl ester. The hydrolytic activities of D198 K SSAP toward l-aspartyl-l-phenylalanine and its methyl ester were, respectively, 74-fold and fourfold higher than those of wild type. Similarly, the initial rate of the enzyme for l-aspartyl-l-phenylalanine methyl ester synthesis was over fivefold higher than that of wild-type SSAP in 90% methanol (v/v) in a one-pot reaction. Furthermore, other l-aspartyl l-amino acid methyl esters were synthesized efficiently using D198 K SSAP. Results show that the substitution of Asp198 of SSAP with Lys is effective for synthesizing l-aspartyl l-amino acid methyl ester.  相似文献   

16.
Summary N-(Benzyloxycarbonyl)-l-phenylalanyl-l-phenylalanine methyl ester was synthesized from N-(benzyloxycarbonyl)-l-phenylalanine and l-phenylalanine methyl ester in an aqueous solution (aqueous phasic reaction), in an aqueous/organic biphasic system (biphasic reaction), and in an organic solvent (organic phasic reaction) with immobilized thermolysin. In the aqueous phasic reaction with thermolysin immobilized on Amberlite XAD-7, the whole product was trapped inside the support; extraction with ethyl acetate was needed to recover the product, and the equilibrium yield was low (about 65%). With the biphasic and organic phasic reactions with ethyl acetate as an organic solvent, the yield was around 95%. Because of the high yield and feasibility of operation, repeated batch and continuous reactions were done in the biphasic and organic phasic systems, respectively. The half-lives of the activity for the immobilized enzyme used in the biphasic system at 40°C by repeated batch operation and in a plug flow reactor fed with substrate dissolved in ethyl acetate at 40°C and 30°C were estimated to be about 200 h (67 batches), 420 h, and 1100 h, respectively.  相似文献   

17.
We investigated the effects of the lyophilisation medium (enzyme plus buffer salt and additives) and of water activity (a(w)) on the catalytic properties of lipase from Chromobacterium viscosum (lipase CV) in organic solvents; catalysis of ester and lactone synthesis were compared and, despite the similarities of the reactive groups involved in these reactions, some interesting differences were observed. Including 2-[N-morpholino]ethanesulfonic acid (MES) buffer in the lyophilisation medium of lipase CV increased its catalytic activity in transesterification and lactonisation, although the buffer salt requirement for maximal activity differed between the two reactions. Sorbitol, glucose, lactose, 18-crown-6 (crown ether 18-C-6), beta-cyclodextrin and bovine serum albumin were employed as alternative additives in the transesterification reaction, but were not as effective as MES buffer. Salt hydrates were used to investigate the effect of a(w) on esterification and lactonisation reactions catalysed by lipase CV. The maximum rate of hexadecanolide synthesis in toluene occurred at a(w) = 0.48. The optimum a(w) for the transesterification reaction in heptane/alcohol mixtures depended on the alcohol substrate employed (1-heptanol, 2-heptanol, or 3-methyl-3-hexanol) but not on the acyl donor (p-NP acetate or caprylate). The optimum a(w) values for both reactions were unchanged when a common solvent system (toluene/1-heptanol) was employed, indicating that the dependence of enzyme activity on a(w) is an intrinsic property of the enzyme-catalysed reaction and not a function of the solvent or other additives.  相似文献   

18.
Summary We recently reported the identification of a peptide (YIYGSFK) as an efficient substrate for p60c-src using a random combinatorial peptide library screening method. Over 70 analogues of YIYGSFK were designed and synthesized on beads and their phosphorylation on solid phase by p60c-src was quantitated by the PhosphorImager. A hydrophobic l-amino acid in position 2 and a basic amino acid in position 7 proved crucial for activity as a substrate. In addition, the l-tyrosine residue at position 3 was critical as the phosphorylation site and was found to be stereospecific, as substitution with the d-enantiomer at this position rendered the peptide totally inactive.Abbreviations -alanine - -aminocaproic acid - Ac N-acetyl - BOP benzotriazol-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate - BSA bovine serum albumin - Cha l-cyclohexylalanine - Chg l-cyclohexylglycine - Dab l-diaminobutyric acid - Dap l-diaminoproprionic acid - DIEA N,N-diisopropylethylamine - DMF dimethylformamide - Fmoc fluorenylmethyloxycarbonyl - HOBt N-hydroxybenzotriazole - MeF N-methyl-l-phenylalanine - MeG N-methylglycine - MeI N-methyl-l-isoleucine - MES 2-[N-morpholinolethanesulfonic acid - Nle l-norleucine - Orn l-ornithine - TFA trifluoroacetic acid - Z-Sar benzyloxycarbonyl-sarcosine - Z-Tyr benzyloxycarbonyl-l-tyrosine  相似文献   

19.
A new approach in biotechnological processes is to use lipase modified with polyethylene glycol(PEG) which has both hydrophilic and hydrophobic properties. The PEG-lipase is soluble in organic solvents such as benzene and chlorinated hydrocarbons and exhibits high enzymic activity in organic solvents. The PEG-lipase catalyses the reverse reaction of hydrolysis in organic solvents; ester synthesis and ester exchange reactions. The PEG-lipase can also be conjugated to magnetite (Fe3O4). The magnetic lipase catalyses ester synthesis in organic solvents and can be readily recovered by magnetic force without loss of enzymic activity.  相似文献   

20.
Lipase from Mucor miehei was used to catalyse the esterification reaction between propionic acid and methyl alcohol in modified organic media. Small-scale model studies were performed in order to define the optimal conditions. The specific activity of immobilized lipase, adsorbed onto hydrophilic supports, compared to free lipase, showed that enzyme activity was altered by immobilisation. Non-polar solvents were shown to be less harmful for the biocatalyst than solvents with higher polarity. Diethyl ether was used as the cosolvent of hexane to improve the solubility of substrates in the organic phase thus increasing contact with enzyme. An optimal ratio of 90/10 (v/v) was determined for a hexane/diethyl ether mixture. The mass of enzyme preparation must be high enough to display optimal diffusion of the reagents and hydration of the catalytic sites. Increased substrate concentrations were stimulatory up to a point after which inhibition and enzyme destabilisation, in repeated runs, occurred. Water saturation of the organic medium greatly lowered the biosynthetic activity of the enzyme. It was possible to reach a 96% methyl propionate biosynthesis yield after 2.30 h reaction, underlining the free-enzyme operational capacity in a quasi-anhydrous modified organic medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号