首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of therapeutic proteins in mammalian cell lines is of outstanding importance. The maintenance of most mammalian cell lines in culture requires the addition of serum to the culture medium. The elimination of serum from mammalian cell culture is desirable since serum is expensive and a source of contaminants, e.g. viruses, mycoplasma or prions. Here we describe the composition of serum- and protein-free media for the Chinese hamster ovary (CHO) cell line DUKXB11. The serum-free formulation supports excellent growth of CHO DUKXB11 cells at low (23cells/cm2) and high (2 x 10(4) cells/cm2) seeding densities characterized by a generation time of 10-12h, and, after addition of 0.2% pluronic F-68, the growth of a recombinant suspension cell line derived from DUKXB11. In addition, this formulation also allowed us to adapt recombinant cell lines expressing various amounts of human antithrombin ATIII (ATIII) to serum-free conditions. Secretion of ATIII was readily observed in the serum-free medium. Minor changes to the serum-free formulation resulted in a protein free formulation that supported growth of CHO DUKXB11 cells, growth of recombinant CHO cells expressing ATIII, and production of ATIII.  相似文献   

2.
3.
Transient gene expression systems in mammalian cells continue to grow in popularity due to their capacity to produce significant amounts of recombinant protein in a rapid and scalable manner, without the lengthy time periods and resources required for stable cell line development. Traditionally, production of recombinant monoclonal antibodies for pre-clinical assessment by transient expression in CHO cells has been hampered by low titers. In this report, we demonstrate transient monoclonal antibody titers of 140 mg/l with CHO cells using the episomal-based transient expression system, Epi-CHO. Such titers were achieved by implementing an optimized transfection protocol incorporating mild-hypothermia and through screening of a variety of chemically defined and serum-free media for their ability to support elevated and prolonged viable cell densities post-transfection, and in turn, improve recombinant protein yields. Further evidence supporting Epi-CHO’s capacity to enhance transgene expression is provided, where we demonstrate higher transgene mRNA and protein levels of two monoclonal antibodies and a destabilized enhanced green fluorescent protein with Epi-CHO compared to cell lines deficient in plasmid DNA replication and/or retention post-transfection. The results demonstrate the Epi-CHO system’s capacity for the rapid production of CHO cell-derived recombinant monoclonal antibodies in serum-free conditions.  相似文献   

4.
Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins.  相似文献   

5.
The Bombyx mori 30Kc gene is known to have anti-apoptotic activity and can enhance the cell growth and expression of recombinant proteins in anchorage-dependent CHO cell cultures. In this study, an interferon-β (IFN-β)-producing CHO cell line, which expresses the recombinant 30Kc6 gene, was constructed to investigate the effect of 30Kc6 expression on the production of IFN-β in serum-free suspension culture. The 30Kc6 expressing cell line showed lower apoptotic activity and prolonged cell viability under apoptotic conditions induced by the addition of sodium butyrate, staurosporine, or the removal of serum. The 30Kc6 expressing cell line also suppressed the loss of mitochondrial membrane potential induced under these conditions. It was observed that viability, and production of IFN-β were also enhanced by 30Kc6 expression in serum-free suspension cultures. These results indicate that the 30Kc6 gene can positively affect the viability and production of recombinant therapeutic proteins in serum-free suspension cultures of CHO cell lines.  相似文献   

6.
Human pro-urokinase (pro-UK) gene was engineered for expression in mammalian cells. The stability of recombinant pro-UKs produced by two kinds of cells, Chinese hamster ovary (CHO) and human lymphoblastoid Namalwa KJM-1 cells, were compared. The pro-UK expressed in CHO cells in serum-free medium was degraded by cysteine endopeptidase secreted by CHO cells. This endopeptidase was inhibited by pchloromercuribenzonate (PCMB) and leupeptin more efficiently than by aprotinin. On the other hand, the pro-UK expressed in Namalwa KJM-1 cells was not degraded, resulting in the stable production of pro-UK at a rate of 2–3 g/106 cells/day by use of a gene amplification method with dihydrofolate reductase (DHFR) in serum-free medium. Thus, Namalwa KJM-1 cells showed the desired characteristics as a host cell for the production of recombinant proteins. The stability of recombinant proteins produced in heterologous systems may vary depending on the host cells.Abbreviations ABTS 2,2-azino-di-(3-ethylbenzothiazoline) sulfonic acid diammonium salt - AMC 7-amino-4-methylcoumarin - CHO Chinese hamster ovary - DFP diisopropylfluorophosphate - DHFR dihydrofolate reductase - ELISA enzyme-linked immunosorbent assay - MCA 4-methylcoumaryl-7-amide - MTX methotrexate - NEAA non essential amino acid - NEM N-ethylmaleimide - PCMB p-chloromercuribenzonate - PMSF phenylmethanesulfonyl fluoride - pro-UK pro-urokinase  相似文献   

7.
We have engineered dihydrofolate reductase-deficient (dhfr(-)) Chinese hamster ovary (CHO)-DUKX B11 cells adapted for growth in serum-free suspension cultures for unlinked muristerone-inducible expression of the cyclin-dependent kinase inhibitor p27Kip1 and constitutive expression of the soluble intercellular adhesion molecule-1 (sICAM), a potent common cold therapeutic. Conditional overexpression of p27Kip1 resulted in a sustained G1-specific growth arrest of transgenic CHO-DUKX associated with up to fivefold-increased specific sICAM productivity. Herein we exemplify the implementation of controlled proliferation technology in a major biopharmaceutical production cell line that is compatible with key requirements for large-scale production procedures, including constitutive transgene expression and anchorage-independent growth in serum-free media.  相似文献   

8.
9.
适于无血清贴壁培养的抗凋亡宿主细胞系CHO-IVB2的构建   总被引:3,自引:0,他引:3  
应用无血清培养基培养CHO细胞时,由于没有血清提供各种贴壁因子,细胞以悬浮的方式生长。在实际的大规模细胞培养中,CHO细胞往往以贴壁方式培养,要么贴壁于悬浮的微载体中,要么贴壁于固定的聚酯盘状介质或中空纤维中,而很少直接悬浮于培养基中。在无血清培养基中,Vitronectin单一组分可以促使CHO细胞的贴壁和扩增。通过双表达lgf-1和Bcl-2基因,已经构建了可以在无蛋白培养基IMEM中抗凋亡生长的细胞株CHO-IB3。在此基础上,构建了可以同时表达Igf-1、Vitronectin和Bcl-2三个蛋白的三顺反子表达载体pCI—NII—IVB。将该载体转染于CHO—dhfr^-细胞中,构建了一个细胞株CHO—IVB2。该细胞株可以在无蛋白培养基中抗凋亡生长,适于以贴壁的方式大规模培养,用于大量生产外源目的蛋白。  相似文献   

10.
A GFP-based screen for growth-arrested, recombinant protein-producing cells   总被引:2,自引:0,他引:2  
The growth of anchorage-dependent Chinese hamster ovary (CHO) cells is arrested upon serum deprivation; however, a portion of these cells remain viable for extended time periods in serum-free culture. This work presents a strategy to both rapidly generate a heterogeneous population of CHO cells as well as to select for subpopulations that remain robust and continue to produce recombinant protein when their growth is arrested. Stable expression of recombinant proteins in mammalian cells is often a tedious and time-consuming process because only a small percentage of transfected cells will express sufficient quantities of protein. To overcome the limitations associated with standard transformation and selection methods, bicistronic retroviral expression technology was used. First, bicistronic retroviral constructs encoding for both interferon gamma (IFN-gamma), the model therapeutic protein, and green fluorescent protein (GFP), the quantitative selectable marker, were generated. Next, recombinant retroviruses were obtained from transient transfection of a helper-cell line and were used to infect susceptible CHO cells. Cells with the bicistronic expression module stably integrated into their genome fluoresce green and could thereby be easily isolated by fluorescence-activated cell sorting. Upon subjecting successfully infected cells to serum withdrawal, significant declines in cell viability and GFP expression occurred. After imposing this selection pressure on the cells for 8 days, GFP producers were isolated from the survivors by fluorescence-activated cell sorting and expanded. To evaluate the effectiveness of the screening process, the selected cells were exposed to a second round of serum deprivation. Unlike the original cell population from which it was derived, the subpopulation remained robust and continued to stably express both GFP and IFN-gamma throughout the extended period of serum-free culture. Within 2 weeks, cells selected for recombinant protein production under serum-free conditions were successfully generated and isolated.  相似文献   

11.
Insulin is the most commonly used growth factor for sustaining cell growth and viability in serum-free Chinese hamster ovary (CHO) cell cultures. In the present study insulin and IGF-1 analogue (LongR(3)) were compared for their ability to support growth, viability, and production of two serum-free CHO cell lines expressing recombinant protein. The first cell line, VA12, expresses protein B, and the second cell line, CL23, expresses protein C. Both molecules are recombinant cytokine receptors. VA12 will grow in serum-free media lacking growth factor, while CL23 requires either insulin or LongR(3) for cell growth. Both cell lines, however, require a growth factor for optimal performance under production conditions. In this study, LongR(3) was better able to sustain the viability of both cell lines under production conditions than insulin. These data indicate that while insulin and LongR(3) can both serve as growth and viability factors for CHO cells, LongR(3) is the preferred growth factor for cell lines VA12 and CL23.  相似文献   

12.
Keen MJ  Rapson NT 《Cytotechnology》1995,17(3):153-163
A serum-free medium, WCM5, has been developed for the large scale propagation of CHO (Chinese hamster ovary) cells which express recombinant protein using dihydrofolate reductase as a selectable marker. WCM5 was prepared by supplementing Iscoves medium without lecithin, albumin or transferrin with a number of components which were shown to benefit growth. WCM5 medium contained 5 mg l–1 human recombinant insulin (Nucellin) but was otherwise protein-free. CHO 3D11* cells which had been engineered to express a humanised antibody, CAMPATH*-1H, were routinely grown using serum-containing medium. From a seeding density of 105 cells ml–1, cells grown in static culture with serum reached a maximal cell density of 6.5×105 cells ml–1 after 6 days in culture and produced a maximal antibody concentration of 69 mg l–1 after 11 days in culture. CHO 3D11* cells grown with serum were washed in serum-free medium then cultured in WCM5 medium. Following a period of adaptation the cell growth and product yield was superior to that achieved with serum-containing medium. CHO cells producing CAMPATH-1H grown in an 8000 l stirred bioreactor seeded with 2×105 cells ml–1 reached a maximal viable cell density of 2.16×106 cells ml–1 after 108 h in culture and a maximal antibody concentration of 131.1 mg l–1 after 122 h in culture.Abbreviations CHO Chinese hamster ovary - dhfr dihydrofolate reductase - dhfr dihydrofolate reductase deficient - MTX methotrexate - H hypoxanthine - T thymidine - T/V trypsin versene - F12 Hams F12 medium - NEAA non essential amino acids  相似文献   

13.
Innovation in monoclonal antibody (mAb) production continues to be driven by cell engineering strategies to increase yield and improve product quality. In a previous study, to investigate the effectiveness of transporter overexpression strategies, we prepared a taurine transporter‐overexpressing host cell line (DXB11/TAUT) that produced a higher proportion of high‐mAb‐titer strains than did the parent host cell line. In the current study, we selected a single DXB11/TAUT/mAb1 strain that remained viable for longer (up to 1 month) under common fed‐batch culture conditions, and the improvement in viability could be attributed to its improved metabolic properties. It was also more productive (up to >100 pg/cell/day) and yielded more mAb1 (up to 8.1 g/L/31 days) than the parent cell line, and the mAb1 it produced was of comparable quality. These results suggested that this host cell engineering strategy has unique potential for the improvement of mAb‐producing Chinese hamster ovary (CHO) cells; for example, it may be appropriate for high cell density perfusion culture. TAUT‐overexpressing cell lines rapidly accumulated the byproduct alanine, and our challenge in the present study was to apply a strategy for modulating cell metabolism to utilize this byproduct to achieve a high mAb yield in a shorter culture period. To accomplish this, we genetically modified the DXB11/TAUT/mAb1 strain to cooverexpress alanine aminotransferase 1 (ALT1). The resulting DXB11/TAUT/mAb1/ALT1 cooverexpressing strain gave a higher mAb yield in a shorter culture period (5.9 g/L/14 days). It is usually difficult to drive the overexpression of two functional genes while balancing competing goals. However, forced cooverexpression of TAUT and ALT1 in our DXB11/TAUT/mAb1/ALT1 strain resulted in a higher proliferation than the DXB11/TAUT/mAb1 strain, with an ideal balance between cell viability and productivity. Therefore, we have demonstrated a strategy capable of achieving an optimum balance among the goals of cell viability, productivity, and proliferative capacity. Biotechnol. Bioeng. 2013; 110: 2208–2215. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞是生产复杂重组药物蛋白的首选宿主细胞,腺嘌呤磷酸核糖转移酶(adenine phosphoribosyltransferase,APRT)催化腺嘌呤与磷酸核糖缩合形成腺苷一磷酸,是嘌呤生物合成步骤中的关键酶。采用基因编辑技术敲除CHO细胞中aprt基因,验证获得的APRT缺陷型CHO细胞系的生物学特性;构建两种真核表达载体:对照载体(含有目的基因增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)和弱化载体(含有启动子和起始密码子突变的aprt弱化表达盒及EGFP),分别转染APRT缺陷型和野生型CHO细胞并筛选获得稳定转染的细胞池;重组CHO细胞传代培养60代并用流式细胞术检测EGFP表达的平均荧光强度,并比较不同实验组重组蛋白EGFP的表达稳定性。PCR扩增和测序结果表明,CHO细胞aprt基因成功敲除;获得的APRT缺陷型CHO细胞系在细胞形态、生长增殖、倍增时间等生物学特性方面与野生CHO细胞无显著差异。目的蛋白瞬时表达结果表明,与野生型CHO细胞相比,转染对照载体和弱化载体的APRT缺陷型CHO细胞系中EGFP的表达分别提高了42%±6%和56%±9%;特别是长期传代培养时,转染弱化载体的APRT缺陷型细胞中EGFP表达量显著高于野生型CHO细胞(P<0.05);构建的基于APRT缺陷型CHO细胞系能够明显提高重组蛋白的长期表达稳定性。研究结果为建立高效稳定的CHO细胞表达系统提供了一种有效的细胞工程策略。  相似文献   

15.
Chinese hamster ovary (CHO) cells are the most commonly used host cell line for the production of recombinant biopharmaceuticals. These biopharmaceuticals are typically secreted from CHO cells and purified from harvested cell culture media. The purpose of this study was to investigate changes in the secreted proteome of CHO cells over the various stages of the growth cycle using Surface Enhanced Laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF MS). Conditioned media samples were collected each day over a 6 day growth period from CHO-K1 cells grown in low serum (0.5% FBS) conditions in monolayer culture. Samples were profiled on a number of ProteinChip arrays with different chromatographic surfaces. From this study, 24 proteins were found to be differentially regulated at different phases of the growth cycle in CHO-K1 cells, when profiled on two chromatographic surfaces, Q10 (anionic) and IMAC30 (metal affinity) ProteinChip arrays.  相似文献   

16.
The amount of recombinant product obtained from mammalian cells grown in a bioreactor is in part limited by achievable cell densities and the ability of cells to remain viable over extended periods of time. In an attempt to generate cell lines capable of better bioreactor performance, we subjected the DG44 Chinese Hamster Ovary (CHO) host cell line and a recombinant production cell line to an iterative process whereby cells capable of surviving the harsh conditions in the bioreactor were selected. This selective process was termed "bioreactor evolution". Following the selective process, the "evolved" host cells attained a 2-fold increase in peak cell density and a 72% increase in integral cell area. Transient transfection experiments demonstrate that the evolved cells have the same transfection efficiency and the same secretory potential as the initial cells. The "evolved" host was also found to contain a large subpopulation of cells that did not require insulin for growth. From this, a new population of growth-factor-independent cells was obtained. These improvements in host properties should prove beneficial in the expression of recombinant proteins in fed-batch processes. The selective process was also applied to a recombinant production cell line. The evolved cells from this selection exhibited a 38% increase in peak cell density, a 30% increase in integral cell area, and a 36% increase in product titer. These increases were obtained without any appreciable impact on product quality, demonstrating the usefulness of this simple approach to improve the performance of recombinant cell lines.  相似文献   

17.
Previously we reported the development of a novel expression system with Tat/TAR-oriP vectors and HKB11 cell line, which supports high level protein expression (Cho et al. Cytotechnology 2001, 37, 23-30). In the present study, we further demonstrated that HKB11 cells are suitable for high throughput expression (microgram scale) of genomic candidates in transient transfection system for in vitro evaluation of biological functions. HKB11 cells were also shown to support the production of milligram to gram quantities of protein drug candidates for in vivo evaluation of efficacy in various disease models. Stable HKB11 clones secreting high levels of a tissue factor (TF; 40-50 pg/c/d) and B-domain deleted recombinant factor VIII (BDDrFVIII; 5-10 microU/c/d) were derived under serum-free conditions. The specific productivity for these two proteins from the HKB11 cells was 10-fold greater than those from CHO cells derived under the similar conditions. In conclusion, we have demonstrated that the HKB11 cell line is well-suited for transient and long-term production of recombinant proteins.  相似文献   

18.
Therapeutic monoclonal antibodies (mAb) are often produced in Chinese hamster ovary (CHO) cells. Three commonly used CHO host cells for generating stable cell lines to produce therapeutic proteins are dihydrofolate reductase (DHFR) positive CHOK1, DHFR‐deficient DG44, and DUXB11‐based DHFR deficient CHO. Current Genentech commercial full‐length antibody products have all been produced in the DUXB11‐derived DHFR‐deficient CHO host. However, it has been challenging to develop stable cell lines producing an appreciable amount of antibody proteins in the DUXB11‐derived DHFR‐deficient CHO host for some antibody molecules and the CHOK1 host has been explored as an alternative approach. In this work, stable cell lines were developed for three antibody molecules in both DUXB11‐based and CHOK1 hosts. Results have shown that the best CHOK1 clones produce about 1 g/l for an antibody mAb1 and about 4 g/l for an antibody mAb2 in 14‐day fed batch cultures in shake flasks. In contrast, the DUXB11‐based host produced ~0.1 g/l for both antibodies in the same 14‐day fed batch shake flask production experiments. For an antibody mAb3, both CHOK1 and DUXB11 host cells can generate stable cell lines with the best clone in each host producing ~2.5 g/l. Additionally, studies have shown that the CHOK1 host cell has a larger endoplasmic reticulum and higher mitochondrial mass. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:980–985, 2013  相似文献   

19.
Chinese hamster ovary (CHO) cells are a ubiquitous tool for industrial therapeutic recombinant protein production. However, consistently generating high-producing clones remains a major challenge during the cell line development process. The glutamine synthetase (GS) and dihydrofolate reductase (DHFR) selection systems are commonly used CHO expression platforms based on controlling the balance of expression between the transgenic and endogenous GS or DHFR genes. Since the expression of the endogenous selection gene in CHO hosts can interfere with selection, generating a corresponding null CHO cell line is required to improve selection stringency, productivity, and stability. However, the efficiency of generating bi-allelic genetic knockouts using conventional protocols is very low (<5%). This significantly affects clone screening efficiency and reduces the chance of identifying robust knockout host cell lines. In this study, we use the GS expression system as an example to improve the genome editing process with zinc finger nucleases (ZFNs), resulting in improved GS-knockout efficiency of up to 46.8%. Furthermore, we demonstrate a process capable of enriching knockout CHO hosts with robust bioprocess traits. This integrated host development process yields a larger number of GS-knockout hosts with desired growth and recombinant protein expression characteristics.  相似文献   

20.
Using an adaptive strategy, Chinese hamster ovary (CHO) cell lines were developed that are capable of robust growth in serum-free suspension culture. These preadapted derivatives of the commonly used strain of CHO cells (CHO DUKX), termed PA-DUKX, were used for the introduction and stable expression of several heterologous human genes. A significant advantage of recombinant PA-DUKX cells was their ability to readily resume growth in serum-free suspension culture after transfection and amplification of heterologous genes. Expression of recombinant human proteins in PA-DUKX cells was quantitatively similar to that of lineages generated using conventional CHO DUKX cells. In addition, recombinant human proteins expressed by transfected PA-DUKX lineages were shown to be biochemically and structurally similar to those expressed in CHO DUKX cells, PA-DUKX host cell technology provides an opportunity for reducing the time and resources required to develop large-scale, suspension culture-based manufacturing processes employing serum-free medium. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号