共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies of communities implicate many potential mechanisms that can create alternate stable states. These include density-dependent foraging behavior, size refuges reached by early colonists, environmental feedback following disturbance, and different initial densities of intraguild predators. Previous work shows that alternate states of varying stability can occur in food webs containing the intraguild predators Blepharisma americanum and Tetrahymena vorax. Differences in colonization history could create the alternate states, consisting of dominance by either Blepharisma or Tetrahymena, but it was unclear whether results depended on effects of initial density or only on changes in the resource base. We manipulated initial densities of both species to determine if density effects alone could create alternate stable states. Convergence of these communities over time indicated that differences in initial density did not create alternate stable states. By default, other factors influenced by colonization history, such as resource availability, may produce alternate states. Models of alternate stable-state phenomena should incorporate differences in resource availability in addition to direct competitive and predatory interactions to provide a more complete depiction of the causes of differences in community composition in otherwise similar habitats. 相似文献
2.
Effects of partitioning allochthonous and autochthonous resources on food web stability 总被引:1,自引:0,他引:1
The flux of energetic and nutrient resources across habitat boundaries can exert major impacts on the dynamics of the recipient food web. Competition for these resources can be a key factor structuring many ecological communities. Competition theory suggests that competing species should exhibit some partitioning to minimize competitive interactions. Species should partition both in situ (autochthonous) resources and (allochthonous) resources that enter the food web from outside sources. Allochthonous resources are important sources of energy and nutrients in many low productivity systems and can significantly influence community structure. The focus of this paper is on: (i) the influence of resource partitioning on food web stability, but concurrently we examine the compound effects of; (ii) the trophic level(s) that has access to allochthonous resources; (iii) the amount of allochthonous resource input; and (iv) the strength of the consumer–resource interactions. We start with a three trophic level food chain model (resource–consumer–predator) and separate the higher two trophic levels into two trophospecies. In the model, allochthonous resources are either one type available to both consumers and predators or two distinct types, one for consumers and one for predators. The feeding preferences of the consumer and predator trophospecies were varied so that they could either be generalists or specialists on allochthonous and/or autochthonous resources. The degree of specialization influenced system persistence by altering the structure and, therefore, the indirect effects of the food web. With regard to the trophic level(s) that has access to allochthonous resources, we found that a single allochthonous resource available to both consumers and predators is more unstable than two allochthonous resources. The results demonstrate that species populating food webs that experience low to moderate allochthonous resources are more persistent. The results also support the notion that strong links destabilize food web dynamics, but that weak to moderate strength links stabilize food web dynamics. These results are consistent with the idea that the particular structure, resource availability, and relative strength of links of food webs (such as degree of specialization) can influence the stability of communities. Given that allochthonous resources are important resources in many ecosystems, we argue that the influence of such resources on species and community persistence needs to be examined more thoroughly to provide a clearer understanding of food web dynamics. 相似文献
3.
The commonness of omnivory in natural communities is puzzling, because simple dynamic models of tri-trophic systems with omnivory are prone to species extinction. In particular, the intermediate consumer is frequently excluded by the omnivore at high levels of enrichment. It has been suggested that adaptive foraging by the omnivore may facilitate coexistence, because the intermediate consumer should persist more easily if it is occasionally dropped from the omnivore's diet. We explore theoretically how species permanence in tri-trophic systems is affected if the omnivore forages adaptively according to the "diet rule", i.e., feeds on the less profitable of its two prey species only if the more profitable one is sufficiently rare. We show that, compared to systems where omnivory is fixed, adaptive omnivory may indeed facilitate 3-species persistence. Counter to intuition, however, facilitation of 3-species coexistence requires that the intermediate consumer is a more profitable prey than the basal resource. Consequently, adaptive omnivory does not facilitate persistence of the intermediate consumer but enlarges the persistence region of the omnivore towards parameter space where a fixed omnivore would be excluded by the intermediate consumer. Overall, the positive effect of adaptive omnivory on 3-species persistence is, however, small. Generally, whether omnivory is fixed or adaptive, 3-species permanence is most likely when profitability (=conversion efficiency into omnivores) is low for basal resources and high for intermediate consumers. 相似文献
4.
We developed a mechanistic model of nutrient, phytoplankton, zooplankton and fish interactions to test the effects of phytoplankton
food quality for herbivorous zooplankton on planktonic food web processes. When phytoplankton food quality is high strong
trophic cascades suppress phytoplankton biomass, the zooplankton can withstand intense zooplanktivory, and energy is efficiently
transferred through the food web sustaining higher trophic level production. Low food quality results in trophic decoupling
at the plant-animal interface, with phytoplankton biomass determined primarily by nutrient availability, zooplankton easily
eliminated by fish predation, and poor energy transfer through the food web. At a given nutrient availability, food quality
and zooplanktivory interact to determine zooplankton biomass which in turn determines algal biomass. High food quality resulted
in intense zooplankton grazing which favored fast-growing phytoplankton taxa, whereas fish predation favored slow-growing
phytoplankton. These results suggest algal food quality for herbivorous zooplankton can strongly influence the nature of aquatic
food web dynamics, and can have profound effects on water quality and fisheries production.
Handling editor: D. Hamilton 相似文献
5.
Ballantyne F 《Journal of theoretical biology》2004,226(3):349-357
A three-state, discrete-time Markov chain is used to model the dynamics of energy flow in a tri-trophic food web. The distribution of energy in the three trophic levels is related to the rates of flow between the trophic levels and calculated for the entire range of possible flow values. These distributions are then analysed for stability and used to test the idea that plants are resource-limited and herbivores are predation-limited. Low rates of death and decomposition, when coupled with low rates of herbivory and carnivory, tend to destabilize this food web. Food webs with higher rates of death and decomposition are relatively more stable regardless of rates of herbivory and carnivory. Plants are more prone to resource-limitation and herbivores are, in general, limited by their predators, which supports Hairston et al. (Am. Nat. 94 (1960) 421). The rate of decomposition often mediates the roles of top-down and bottom-up control of energy flow in the food web. 相似文献
6.
This is the second of two papers dedicated to the relationship between population models of competition and biodiversity. Here, we consider species assembly models where the population dynamics is kept far from fixed points through the continuous introduction of new species, and generalize to such models the coexistence condition derived for systems at the fixed point. The ecological overlap between species and shared preys, that we define here, provides a quantitative measure of the effective interspecies competition and of the trophic network topology. We obtain distributions of the overlap from simulations of a new model based both on immigration and speciation, and show that they are in good agreement with those measured for three large natural food webs. As discussed in the first paper, rapid environmental fluctuations, interacting with the condition for coexistence of competing species, limit the maximal biodiversity that a trophic level can host. This horizontal limitation to biodiversity is here combined with either dissipation of energy or growth of fluctuations, which in our model limit the length of food webs in the vertical direction. These ingredients yield an effective model of food webs that produce a biodiversity profile with a maximum at an intermediate trophic level, in agreement with field studies. 相似文献
7.
Vandermeer J 《Journal of theoretical biology》2006,238(3):497-504
The ecological concept of omnivory, feeding at more than a single trophic level, is formulated as an intermediate stage between any two of three classical three-dimensional species interaction systems-tritrophic chain, competition, and polyphagy. It is shown that omnivory may be either stabilizing or destabilizing, depending, in part, on the conditions of the parent systems from which it derives. It is further conjectured that the tritrophic to competition gradient cannot be entirely stable, that there must be an instability at some level of intermediate omnivory. 相似文献
8.
9.
We investigate the long-term web structure emerging in evolutionary food web models when different types of functional responses are used. We find that large and complex webs with several trophic layers arise only if the population dynamics is such that it allows predators to focus on their best prey species. This can be achieved using modified Lotka-Volterra or Holling/Beddington functional responses with effective couplings that depend on the predator's efficiency at exploiting the prey, or a ratio-dependent functional response with adaptive foraging. In contrast, if standard Lotka-Volterra or Holling/Beddington functional responses are used, long-term evolution generates webs with almost all species being basal, and with additionally many links between these species. Interestingly, in all cases studied, a large proportion of weak links result naturally from the evolution of the food webs. 相似文献
10.
Gabriel Yvon-Durocher Jose M. Montoya Mark C. Emmerson Guy Woodward 《Central European Journal of Biology》2008,3(1):91-103
The integration of detailed information on feeding interactions with measures of abundance and body mass of individuals provides
a powerful platform for understanding ecosystem organisation. Metabolism and, by proxy, body mass constrain the flux, turnover
and storage of energy and biomass in food webs. Here, we present the first food web data for Lough Hyne, a species rich Irish
Sea Lough. Through the application of individual-and size-based analysis of the abundance-body mass relationship, we tested
predictions derived from the metabolic theory of ecology. We found that individual body mass constrained the flux of biomass
and determined its distribution within the food web. Body mass was also an important determinant of diet width and niche overlap,
and predator diets were nested hierarchically, such that diet width increased with body mass. We applied a novel measure of
predator-prey biomass flux which revealed that most interactions in Lough Hyne were weak, whereas only a few were strong.
Further, the patterning of interaction strength between prey sharing a common predator revealed that strong interactions were
nearly always coupled with weak interactions. Our findings illustrate that important insights into the organisation, structure
and stability of ecosystems can be achieved through the theoretical exploration of detailed empirical data. 相似文献
11.
NATHALIE NIQUIL GRETTA BARTOLI JOTARO URABE GEORGE A. JACKSON LOUIS LEGENDRE CHRISTINE DUPUY M. KUMAGAI 《Freshwater Biology》2006,51(8):1570-1585
1. A steady‐state model of carbon flows was developed to describe the summer planktonic food web in the surface mixed‐layer of the North Basin in Lake Biwa, Japan. This model synthesised results from numerous studies on the plankton of Lake Biwa. 2. An inverse analysis procedure was used to estimate missing flow values in a manner consistent with known information. Network analysis was applied to characterise emergent properties of the resulting food web. 3. The system strongly relied on flows related to detrital particles. Whereas primary production was mainly by phytoplankton >20 μm, microzooplankton were active and mainly ingested detritus and bacteria. 4. The main emergent property of the system was strong recycling, through either direct ingestion of non‐living material by zooplankton, or ingestion of bacteria after degradation of detritus to release dissolved organic carbon. 相似文献
12.
Flora S. Bacelar Emilio Hernández-García José-Manuel Zaldívar 《Mathematical biosciences》2009,218(1):24-32
We analyze the joint effect of contaminants and nutrient loading on population dynamics of marine food chains by means of bifurcation analysis. Contaminant toxicity is assumed to alter mortality of some species with a sigmoidal dose-response relationship. A generic effect of pollutants is to delay transitions to complex dynamical states towards higher nutrient load values, but more counterintuitive consequences arising from indirect effects are described. In particular, the top predator seems to be the species more affected by pollutants, even when contaminant is toxic only to lower trophic levels. 相似文献
13.
Lothar D. J. Kuijper Matty P. Berg Elly Morriën Bob W. Kooi Herman A. Verhoef 《Global Change Biology》2005,11(2):249-265
Global change may affect the structure and functioning of decomposer food webs through qualitative changes in freshly fallen litter. We analyzed the predicted effects of a changing environment on a dynamic model of a donor‐controlled natural decomposer ecosystem near Wekerom, the Netherlands. This system consists of fungi, bacteria, fungivores, bacterivores and omnivores feeding on microbiota and litter as well. The model concentrates on carbon and nitrogen flows through the trophic niches that define this decomposer system, and is designed to predict litter masses and abundances of soil biota. For modeling purposes, the quality of freshly fallen leaf litter is defined in terms of nitrogenous and non‐nitrogenous components, of which refractory and labile forms are present. The environmental impacts of elevated CO2, enhanced UV‐B and eutrophication, each with their own influence on leaf litter quality, are studied. The model predicts steady‐state dynamics exclusively, for all three scenarios. Environmental changes impact most demonstratively on the highest trophic niches, and affect microbiotic abundances and litter decomposition rates to a lesser extent. We conclude that the absence of trophic cascade effects may be attributed to weak trophic links, and that non‐equilibrium dynamics occurring in the system are generally because of encounter rates based on fractional substrate densities in the litter. We set out a number of experimentally testable hypotheses that may improve understanding of ecosystem dynamics. 相似文献
14.
Body size and food web structure: testing the equiprobability assumption of the cascade model 总被引:2,自引:0,他引:2
M. G. Neubert S. C. Blumenshine D. E. Duplisea T. Jonsson B. Rashleigh 《Oecologia》2000,123(2):241-251
The cascade model successfuly predicts many patterns in reported food webs. A key assumption of this model is the existence of a predetermined trophic hierarchy; prey are always lower in the hierarchy than their predators. At least three studies have suggested that, in animal food webs, this hierarchy can be explained to a large extent by body size relationships. A second assumption of the standard cascade model is that trophic links not prohibited by the hierarchy occur with equal probability. Using nonparametric contingency table analyses, we tested this ”equiprobability hypothesis” in 16 published animal food webs for which the adult body masses of the species had been estimated. We found that when the hierarchy was based on body size, the equiprobability hypothesis was rejected in favor of an alternative, ”predator-dominance” hypothesis wherein the probability of a trophic link varies with the identity of the predator. Another alternative to equiprobabilty is that the probability of a trophic link depends upon the ratio of the body sizes of the two species. Using nonparametric regression and liklihood ratio tests, we show that a size-ratio based model represents a significant improvement over the cascade model. These results suggest that models with heterogeneous predation probabilities will fit food web data better than the homogeneous cascade model. They also suggest a new way to bridge the gap between static and dynamic food web models. Received: 3 February 1999 / Accepted: 26 October 1999 相似文献
15.
Karl O. Rothhaupt 《Freshwater Biology》2000,45(2):105-109
1. In this introduction, I try to follow some developments in plankton ecology, how they have led to current research topics, and how the contributions in this issue of Freshwater Biology are related to these fields of research.
2. Due to several favourable features, such as small size, short generation time and a relatively homogeneous habitat, planktonic organisms remain ideal subjects for theoretical and experimental population ecology.
3. Important current research topics involve: (1) the control of plankton communities by external abiotic factors; (2) bottom-up (limitation by resources) and top-down (control by predators) effects in the food web; (3) the importance of dormant resting stages and benthic–pelagic coupling in plankton dynamics; (4) costs and benefits of the mixotrophic strategy, i.e. the ability to combine a phototrophic and a phagotrophic mode of nutrition. 相似文献
2. Due to several favourable features, such as small size, short generation time and a relatively homogeneous habitat, planktonic organisms remain ideal subjects for theoretical and experimental population ecology.
3. Important current research topics involve: (1) the control of plankton communities by external abiotic factors; (2) bottom-up (limitation by resources) and top-down (control by predators) effects in the food web; (3) the importance of dormant resting stages and benthic–pelagic coupling in plankton dynamics; (4) costs and benefits of the mixotrophic strategy, i.e. the ability to combine a phototrophic and a phagotrophic mode of nutrition. 相似文献
16.
Relatively few published food webs have included parasites, and in this study we examined the animal community in a stream
across eight contiguous seasons to test how inclusion of helminth parasites alters the topology or structure of the food web.
Food webs constructed for each season and analyzed using common binary matrix measures show that species richness, linkage
density, and the number of observed and possible links increased when parasites were included as individual species nodes.
With parasite–parasite and predator–parasite links omitted, measures of community complexity, such as connectance (C), generally increased over multiple seasons. However, relative nestedness (n*) decreased when parasites were included, which may be a result of low resolution of basal resources inflating specialist-to-specialist
links. Overall, adding parasites resulted in moderate changes in food web measures when compared to those of four other published
food webs representing different ecosystems. In addition, including parasites in the food web revealed consistent pathways
of energy flow, and the association of parasite life histories along these pathways suggest stable evolutionary groups of
interacting species within the community.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
17.
1. Trophic heterogeneity, or differences in edibility or resource consumption among species within a single trophic level, is widespread in natural food webs. Here, we test simple food web models that incorporate trophic heterogenity and that make robust predictions regarding food web responses to nutrient enrichment. To test these predictions, we assembled simple food webs consisting of an inedible alga, a mixed assemblage of bacteria, and a protist bacterivore in laboratory microcosms of contrasting nutrient concentrations. 2. Several results were consistent with model predictions. First, increasing nutrient concentration caused an increase in the abundance of the inedible alga, but only in the presence of the bacterivore. Secondly, nutrient enrichment increased the abundance of bacteria, but only in the absence of their bacterivore. Last, nutrient enrichment had no effect on abundance of the bacterivore. 3. Two results were not consistent with model predictions. First, at low nutrient concentrations, the presence of the bacterivore increased the abundance of bacteria. Secondly, although the abundances of the bacterivore and bacteria were positively correlated, some of the lowest abundances of both occurred in the high nutrient treatment. Thus, while our results were generally consistent with several simple food web models, additional explanations are required for selected food web responses. 相似文献
18.
Theory in community ecology often assumes that predator species have similar indirect effects and thus can be treated mathematically as a single functional unit (e.g. guild or trophic level). This assumption is questionable biologically because predator species typically differ in their effects, creating the potential for nonlinearities when they coexist. We evaluated the nature of indirect effects caused by three species of hunting spider predators, singly and in multiple species combinations, on grass and herb plants in experimental old-field food webs. Despite the potential for nonlinearity, indirect effects in different multiple predator combinations consistently did not differ significantly from the respective means of the single species effects. Thus, for this experimental system, the whole was simply the average of the parts. Consequently, models which abstract predator species as single trophic levels would successfully predict indirect effects in this system regardless of the composition of the predator fauna. 相似文献
19.
Alexander I. Kopylov Dmitriy B. Kosolapov Anna V. Romanenko Andrey G. Degermendzhy 《Aquatic Ecology》2002,36(2):179-204
The distribution of primary components of the microbial community (autotrophic pico- and nanoplankton, phototrophic bacteria, heterotrophic bacteria, microscopic fungi, heterotrophic flagellates, ciliates and heliozoa) in the water column of Lake Shira, a steppe brackish-water, stratified lake in Khakasia, Siberia (Russia), were assessed in midsummer. Bacterioplankton was the main component of the planktonic microbial community, accounting for 65.3 to 75.7% of the total microbial biomass. The maximum concentration of heterotrophic bacteria were recorded in the monimolimnion of the lake. Autotrophic microorganisms contributed more significantly to the total microbial biomass in the pelagic zone (20.2–26.5%) than in the littoral zone of the lake (8.7–14.9%). First of all, it is caused by development of phototrophic sulphur bacteria at the oxic-anoxic boundary. The concentrations of most aerobic phototrophic and heterotrophic microorganisms were maximal in the upper mixolimnion. Heterotrophic flagellates dominated the protozoan populations. Ciliates were minor component of the planktonic microbial community of the lake. Heterotrophic flagellates were the most diverse group of planktonic eucaryotes in the lake, which represented by 36 species. Facultative and obligate anaerobic flagellates were revealed in the monimolimnion. There were four species of Heliozoa and only three of ciliates in the lake. 相似文献
20.
Abstract. 1. Three species of Tanypodinae (Chironomidae) were found in an acid and iron-rich stream in southern England. Maximum abundance was achieved in summer and they were sparse at other times. Individuals were aggregated on the stream bed and were overrepresented in accumulations of leaf litter.
2. The diets of all three species consisted of a mixture of prey (prominently detritivorous chironomid larvae) and detritus. More detritus and fewer prey were taken in winter than in summer.
3. When comparing large tanypod species with small and, intraspecifically, late instars with early, the proportion of guts containing prey increased with increasing body size.
4. Stonefly larvae were more prominent in the diet of Zavrelimyia barbatipes (Kieffer) in summer than in winter but for the other two species the reverse was true. A bigger proportion of Trissopelopia longimana (Staeger) guts contained prey in early summer than in August whereas more Macropelopia goetghebueri (Kieffer) guts contained prey in August. This was apparently a consequence of seasonal differences in the distribution of body size among the populations of these two species.
5. The stream contains two further common predators, Plectrocnemia conspersa (Curtis) and Sialis fuliginosa Pict. These are important predators of tanypod larvae but might also compete with them since they severely deplete populations of prey taken in common.
6. Analysis of the food-web in Broadstone Stream reveals remarkably high values of connectance (C and Cmax ) and of species richness times connectance (SCmax ). Such characteristics are theoretically associated with fragile and dynamically unstable food webs, and may be found in 'constant' environments. There is also an apparently unusual prevalence of omnivory in the community. 相似文献
2. The diets of all three species consisted of a mixture of prey (prominently detritivorous chironomid larvae) and detritus. More detritus and fewer prey were taken in winter than in summer.
3. When comparing large tanypod species with small and, intraspecifically, late instars with early, the proportion of guts containing prey increased with increasing body size.
4. Stonefly larvae were more prominent in the diet of Zavrelimyia barbatipes (Kieffer) in summer than in winter but for the other two species the reverse was true. A bigger proportion of Trissopelopia longimana (Staeger) guts contained prey in early summer than in August whereas more Macropelopia goetghebueri (Kieffer) guts contained prey in August. This was apparently a consequence of seasonal differences in the distribution of body size among the populations of these two species.
5. The stream contains two further common predators, Plectrocnemia conspersa (Curtis) and Sialis fuliginosa Pict. These are important predators of tanypod larvae but might also compete with them since they severely deplete populations of prey taken in common.
6. Analysis of the food-web in Broadstone Stream reveals remarkably high values of connectance (C and C