首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two eyespot resistance genes (Pch1 and Pch2) have been characterised in wheat. The potent resistance gene Pch1, transferred from Aegilops ventricosa, is located on the distal end of the long arm of chromosome 7D (7DL). Pch2 derives from the variety Cappelle Desprez and is located at the distal end of chromosome 7AL. The RFLP marker Xpsr121 and the endopeptidase isozyme allele Ep-D1b, are very closely linked to Pch1, probably due to reduced recombination in the region of the introgressed A. ventricosa segment. Pch2 is less closely linked to these markers but is thought to be closer to Xpsr121 than to Ep-A1b. In the present study simple sequence repeat (SSR) markers were integrated into the genetic map of a single chromosome (7D) recombinant (RVPM) population segregating for Pch1. Sequence-tagged-site (STS)-based assays were developed for Xpsp121 and a 7DL wheat EST containing a SSR. SSR markers Xwmc14 and Xbarc97 and the Xpsr121-derived marker co-segregated with Pch1 in the RVPM population. A single chromosome (7A) recombinant population segregating for Pch2 was screened for eyespot resistance and mapped using SSRs. QTL interval mapping closely associated Pch2 with the SSR marker Xwmc525.  相似文献   

2.
Wild grasses in the tribe Triticeae, some in the primary or secondary gene pool of wheat, are excellent reservoirs of genes for superior agronomic traits, including resistance to various diseases. Thus, the diploid wheatgrasses Thinopyrum bessarabicum (Savul. and Rayss) A. Love (2n = 2x = 14; JJ genome) and Lophopyrum elongatum (Host) A. Love (2n = 2x = 14; EE genome) are important sources of genes for disease resistance, e.g., Fusarium head blight resistance that may be transferred to wheat. By crossing fertile amphidiploids (2n = 4x = 28; JJEE) developed from F1 hybrids of the 2 diploid species with appropriate genetic stocks of durum wheat, we synthesized trigeneric hybrids (2n = 4x = 28; ABJE) incorporating both the J and E genomes of the grass species with the durum genomes A and B. Trigeneric hybrids with and without the homoeologous-pairing suppressor gene, Ph1, were produced. In the absence of Ph1, the chances of genetic recombination between chromosomes of the 2 useful grass genomes (JE) and those of the durum genomes (AB) would be enhanced. Meiotic chromosome pairing was studied using both conventional staining and fluorescent genomic in situ hybridization (fl-GISH). As expected, the Ph1-intergeneric hybrids showed low chromosome pairing (23.86% of the complement), whereas the trigenerics with ph1b (49.49%) and those with their chromosome 5B replaced by 5D (49.09%) showed much higher pairing. The absence of Ph1 allowed pairing and, hence, genetic recombination between homoeologous chromosomes. Fl-GISH analysis afforded an excellent tool for studying the specificity of chromosome pairing: wheat with grass, wheat with wheat, or grass with grass. In the trigeneric hybrids that lacked chromosome 5B, and hence lacked the Ph1 gene, the wheat-grass pairing was elevated, i.e., 2.6 chiasmata per cell, a welcome feature from the breeding standpoint. Using Langdon 5D(5B) disomic substitution for making trigeneric hybrids should promote homoeologous pairing between durum and grass chromosomes and hence accelerate alien gene transfer into the durum genomes.  相似文献   

3.
Soliman MH  Rubiales D  Cabrera A 《Hereditas》2001,135(2-3):183-186
Agropyron (Gaertn) is a genus of Triticeae which includes the crested wheatgrass complex, i.e. A. cristatum (L.) as representative species containing the P genome. This species is an important source for increase the genetic variability of both durum and bread wheat. Among the possible interesting features to be introgressed into wheat are resistance to wheat streak mosaic virus, rust diseases, and tolerance to drought, cold and moderate salinity. By crossing tetraploid wheat (Triticum turgidum conv durum, 2n = 4x = 28; AABB) with a fertile allotetraploid (2n = 4x = 28; DDPP) between diploid wheat (T. tauschii) and crested wheatgrass (A. cristatum L.), amphiploid plants were obtained. Fluorescence in situ hybridization (FISH) using both genomic DNA from A. cristatum and the repetitive probe pAs1, proved that the plants were true amphiploids with a chromosome number 2n = 8x = 56 and genomic constitution AABBDDPP. Using total genomic in situ hybridization (GISH) to study meiotic metaphase I, data on allosyndetic and autosyndetic chromosome pairing were obtained. The amphiploids were perennial like the male parent but their morphology was close to that of the wheat parent. They were resistant to wheat leaf rust and powdery mildew under field conditions.  相似文献   

4.
Genomic in situ hybridization was used to study Triticum x Dasypyrum wide hybrids and derived lines. A cytogenetic investigation was carried out in progenies of (i) amphiploids derived from T. turgidum var. durum (T. durum; 2n = 14; genomes AABB) x D. villosum (2n = 14; genome VV), (ii) three-parental hybrids (T. durum x D. villosum) x T. aestivum (2n = 42, genomes A'A'B'B'D'D'), and (iii) T. aestivum aneuploid lines carrying D. villosum chromosomes or chromatin. The amphiploids derived from T. durum x D. villosum showed a stable chromosomal constitution, made up of 14 V chromosomes, 14 chromosomes carrying the wheat A genome and 14 chromosomes carrying the B genome. High karyological instability was observed in the progenies of three-parental hybrids ([T. durum x D. villosum] x T. aestivum). Plants having the expected 14 A chromosomes, 14 B chromosomes, 7 D chromosomes, and 7 V chromosomes were rather rare (4.5%). Many progeny plants (45.5%) had the hexaploid wheat genome with 42 chromosomes and lacked any detectable D. villosum chromatin. Other plants (50%) had 14 A chromosomes and 14 B chromosomes, plus variable numbers of D and V chromosomes, the former being better retained than the latter in most cases. Some T. aestivum lines carrying D. villosum chromosomes or chromatin, as the result of addition, substitution, or recombination events or even a combination of these karyological events, were found to be stable. Other lines were unstable, and these lines carried 1V, 3V, or 5V chromosomes or their portions. Substitution or recombination events where 1V chromosomes were involved could concern the homeologous counterparts in both the A and B and D genomes of wheat. No line could be recovered where the shorter arm of 3V chromosomes was present. Changes in the morphology and banding pattern of V chromosomes were observed in hybrids that did not carry the entire D. villosum complement. By comparing the results of our cytogenetic analyses with certain phenotypic characteristics of the lines studied, genes for discrete traits could be assigned to specific V chromosomes or V chromosome arms. From the frequency of V chromosomes that were involved in chromatin exchanges with or substituted for one of their homeologous counterparts in the A, B, and D wheat genomes, it was inferred that D. villosum belongs to the same phyletic lineage as T. urartu (donor of the A genome of wheat) and Aegilops speltoides (B genome), and that Ae. squarrosa (D genome) diverged earlier from D. villosum.  相似文献   

5.
Of the various chlorophyll abnormalities that occur in polyploid wheats, genetic bases of only two types, chlorina and virescence, are known. Here, for the first time, the chromosomal bases of three other chlorophyll abnormalities, striato-virescence, delayed virescence, and albino, which occur in Emmer wheat (2n = 4x = 28, genome constitution AABB) are reported. A set of disomic substitution lines of Langdon durum was used for chromosome identification. All three abnormalities are controlled by two duplicated recessive genes (carrier chromosome in parentheses); striato-virescence by sv1 (3A) and sv2 (2A), delayed virescence by dv1 (2B) and dv2 (supposedly 2A), and albino by abn1 (2A) and abn2 (2B). Genes on the same chromosome are located in different loci and are recombined with each other. The Chinese Spring cultivar of common wheat (2n = 6x = 42, genome constitution AABBDD) carries wild-type homoeoalleles for these abnormalities; Sv3 (2D), Dv3 (2D), and Abn3 (2D).  相似文献   

6.
Durum wheat (Triticum turgidum subsp. durum) is more salt sensitive than bread wheat (Triticum aestivum). A novel source of Na(+) exclusion conferring salt tolerance to durum wheat is present in the durum wheat Line 149 derived from Triticum monococcum C68-101, and a quantitative trait locus contributing to low Na(+) concentration in leaf blades, Nax1, mapped to chromosome 2AL. In this study, we used the rice (Oryza sativa) genome sequence and data from the wheat expressed sequence tag deletion bin mapping project to identify markers and construct a high-resolution map of the Nax1 region. Genes on wheat chromosome 2AL and rice chromosome 4L had good overall colinearity, but there was an inversion of a chromosomal segment that includes the Nax1 locus. Two putative sodium transporter genes (TmHKT7) related to OsHKT7 were mapped to chromosome 2AL. One TmHKT7 member (TmHKT7-A1) was polymorphic between the salt-tolerant and -sensitive lines, and cosegregated with Nax1 in the high-resolution mapping family. The other TmHKT7 member (TmHKT7-A2) was located within the same bacterial artificial chromosome contig of approximately 145 kb as TmHKT7-A1. TmHKT7-A1 and -A2 showed 83% amino acid identity. TmHKT7-A2, but not TmHKT7-A1, was expressed in roots and leaf sheaths of the salt-tolerant durum wheat Line 149. The expression pattern of TmHKT7-A2 was consistent with the physiological role of Nax1 in reducing Na(+) concentration in leaf blades by retaining Na(+) in the sheaths. TmHKT7-A2 could control Na(+) unloading from xylem in roots and sheaths.  相似文献   

7.
Triticum aestivum (2n = 6x = 42, AABBDD) with Triticum longissimum (2n = 2x = 14; S1S1) cytoplasm ((lo) cytoplasm) has normal fertility and plant vigor. However, the nucleus of durum wheat (Triticum turgidum (2n = 4x = 28, AABB)) is incompatible with the T. longissimum cytoplasm, producing non-viable progeny. This incompatibility is alleviated by scs(ae), a species cytoplasm-specific (scs) gene, on the long arm of chromosome 1D (1DL) of common wheat. The hemizygous (lo) durum scs(ae) line is male sterile and is maintained by crossing to normal durum wheat. After pollination, the seeds produced are either plump and viable (with scs(ae)) or shriveled and inviable (without scsae). Thus, the chromosome with scs(ae) is inherited as a whole without recombination. The objectives of this study were to characterize the chromosome carrying scs(ae) and to determine the process through which this gene was introgressed into the (lo) durum background. Molecular marker analysis with 27 probes and primers mapped to homoeologous group 1 and genomic in situ hybridization using differentially labeled total genomic DNA of durum wheat and Aegilops tauschii suggest the presence of a 1AL segment in place of the distal region of 1DL. Owing to the absence of any detectable duplications or deletions, homoeologous recombination is the most likely mechanism by which this introgression occurred.  相似文献   

8.
R C Pe?a  T D Murray  S S Jones 《Génome》1997,40(2):249-252
The gene Pch2 in 'Cappelle Desprez' is one of two genes found in hexaploid wheat known to confer resistance to eyespot disease. This study was conducted to develop an RFLP linkage map of the distal portion of wheat chromosome 7AL, and to locate and identify markers closely associated with Pch2 for use in marker-assisted selection. Ten loci in addition to Pch2 were mapped on chromosome 7AL, using segregation data from 102 homozygous chromosome 7A recombinant substitution lines derived from 'Chinese Spring' x 'Chinese Spring' ('Cappelle Desprez' 7A). The Pch2 locus was bracketed by two RFLP markers, one 11.0 cM distal to Xcdo347 and the other 18.8 cM proximal to Xwg380. The position of Pch2 on chromosome 7AL is similar to that of Pch1 on chromosome 7DL, suggesting that these resistance genes are homoeoloci. Although no single marker was closely linked to Pch2, simultaneous selection of the flanking RFLP markers Xcdo347 and Xwg380 could be used for selecting Pch2, since double recombination occurred in only 3% of the recombinant population. The use of the flanking RFLP markers to select for Pch2, in combination with previously identified Pch1-linked markers, would facilitate the development of cultivars carrying two genes for resistance to eyespot.  相似文献   

9.
Seven Triticum aestivum (cv. Moisson)-Aegilops ventricosa addition lines and four VPM-1 lines were studied by C-banding, and compared with the parental common wheat cultivars Marne-Desprez (hereafter Marne), Moisson, and A. ventricosa lines 10 and 11. All of the VPM-1 lines had similar C-banding patterns and carried the same major 5B:7B translocation as the parental Marne cultivar. According to the C-banding analysis, the VPM-1 lines carry a complete 7D(7D(v)) chromosome substitution and a translocation involving the 5D and 5D(v) chromosomes. However, the translocation of the 2N(v)/6N(v) chromosome of A. ventricosa to the short arm of the 2A chromosome of wheat that had been identified in an earlier study using molecular analysis (Bonhomme A, Gale MD, Koebner RMD, Nicolas P, Jahier J, Bernard M in Theor Appl Genet 90:1042-1048, 1995; Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS Plant Breed 120:125-128, 2001) was not detected in our study. However, the appearance of a small pAs1 site at the tip of the chromosome 2A short arm in VPM-1 could be indicative of a minor translocation of the A. ventricosa chromosome. The 5B:7B translocation was also found in all seven T. aestivum-A. ventricosa addition lines, although it was not present in the parental common wheat cultivar Moisson. These lines showed different introgression patterns; besides the addition of the five N(v)-genome chromosomes, they also possessed different D(D(v)) genome substitutions or translocations. A whole arm translocation between chromosome 1N(v) and 3D(v) was identified in lines v86 and v137, and also in the A. ventricosa line 10. This observation lends further support to the idea that A. ventricosa line 10, rather than line 11, was used to develop a set of wheat A. ventricosa addition lines.  相似文献   

10.
Durum wheat, Triticum turgidum L. (2n= 4x=28, genome formula AABB) is inferior to bread wheat, T. aestivum L. (2n=6x=42, genome formula AABBDD), in the ability to exclude Na+ under salt strees, in the ratio of the accumulated K+ to Na+ in the leaves under salt stress, and in tolerance of salt stress. Previous work showed that chromosome 4D has a major effect on Na+ and K+ accumulation in the leaves of bread wheat. The 4D chromosome was recombined with chromosome 4B in the genetic background of durum wheat. The recombinants showed that Na+ exclusion and enhanced K+/Na+ ratio in the shoots were controlled by a single locus, Kna1, in the long arm of chromosome 4D. The recombinant families were grown in the field under non-saline conditions and two levels of salinity to determine whether Kna1 confers salt tolerance. Under salt stress, the Kna1 families had higher K+/Na+ ratios in the flag leaves and higher yields of grain and biomass than the Kna1 - families and the parental cultivars. Kna1 is, therefore, one of the factors responsible for the higher salt tolerance of bread wheat relative to durum wheat. The present work provides conceptual evidence that tolerance of salt stress can be transferred between species in the tribe Triticeae.  相似文献   

11.
This study evaluates the potential of flow cytometry for chromosome sorting in durum wheat (Triticum turgidum Desf. var. durum, 2n = 4x = 28). Histograms of fluorescence intensity (flow karyotypes) obtained after the analysis of DAPI-stained chromosomes consisted of three peaks. Of these, one represented chromosome 3B, a small peak corresponded to chromosomes 1A and 6A, and a large peak represented the remaining 11 chromosomes. Chromosomes sorted onto microscope slides were identified after fluorescence in situ hybridization (FISH) with probes for GAA microsatellite, pSc119.2, and Afa repeats. Genomic distribution of these sequences was determined for the first time in durum wheat and a molecular karyotype has been developed for this crop. Flow karyotyping in double-ditelosomic lines of durum wheat revealed that the lines facilitated sorting of any arm of the wheat A- and B-genome chromosomes. Compared to hexaploid wheat, flow karyotype of durum wheat is less complex. This property results in better discrimination of telosomes and high purities in sorted fractions, ranging from 90 to 98%. We have demonstrated that large insert libraries can be created from DNA purified using flow cytometry. This study considerably expands the potential of flow cytogenetics for use in wheat genomics and opens the possibility of sequencing the genome of this important crop one chromosome arm at a time.  相似文献   

12.
An Aegilops ventricosa Tausch (2n = 28, DvDvNvNv) subtelocentric chromosome added to wheat (Triticum aestivum L.) in a disomic addition line was found to carry the genes for resistance Yr17, Lr37, Sr38, and Cre5 already transferred onto chromosome 2AS of the wheat line VPM1. Previous works demonstrated that this Ae. ventricosa chromosome is translocated with respect to the standard wheat genome. The present investigations showed that this chromosome pre-existed in Ae. ventricosa and contains only chromatin specific to the N genome. Using biochemical markers and suitable cytogenetic materials including the monoisosomic addition line for the translocated long arm (6NvL-2NvS), its structure was defined as being 6NvSdel.6NvL-2NvS. It consists of a segment of the short arm 2Nv, containing the resistance genes, attached to a group 6 chromosome lacking a distal part of its short arm. The 2 re arrangements could already be present in Aegilops uniaristata Vis. (2n = 14, NN), the source of the Nv genome of Ae. ventricosa.  相似文献   

13.
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues.  相似文献   

14.
Agropyron cristatum (2n = 4x = 28, PPPP) possesses potentially valuable traits that could be used in wheat (Triticum aestivum) improvement through interspecific hybridization. Homoeologous pairing between wheat chromosomes and P chromosomes added to wheat in a set of wheat - A. cristatum addition lines was assessed. First, the Ph-suppressing effect of P chromosomes (except 7P) was analyzed. It was concluded that this system is polygenic with no major gene, and consequently, has no prospect in the transfer of alien genes from wild relatives. In a second step, the potential of the deletion ph1b of the Ph1 gene for inducing P-ABD pairing was evaluated. Allosyndetic associations between P and ABD genomes are very rare. This very low level of pairing is likely due to divergence in the repeated sequences between Agropyron and wheat genomes. Development of translocation lines using ionizing radiation seems to be a more suitable technique than homoeologous recombination to exploit the A. cristatum genome in wheat improvement.  相似文献   

15.
D Bai  G J Scoles  D R Knott 《Génome》1995,38(1):8-16
In order to counteract the effects of the mutant genes in races of leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm.) and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) in wheat, exploration of new resistance genes in wheat relatives is necessary. Three accessions of Triticum cylindricum Ces. (4x, CCDD), Acy1, Acy9, and Acy11, were tested with 10 races each of leaf rust and stem rust. They were resistant to all races tested. Viable F1 plants were produced from the crosses of the T. cylindricum accessions as males with susceptible MP and Chinese Spring ph1b hexaploid wheats (T. aestivum, 6x, AABBDD), but not with susceptible Kubanka durum wheat (T. turgidum var. durum, 4x, AABB), even with embryo rescue. In these crosses the D genome of hexaploid wheat may play a critical role in eliminating the barriers for species isolation during hybrid seed development. The T. cylindricum rust resistance was expressed in the F1 hybrids with hexaploid wheat. However, only the cross MP/Acy1 was successfully backcrossed to another susceptible hexaploid wheat, LMPG-6. In the BC2F2 of the cross MP/Acy1//LMPG-6/3/MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 (infection types (IT) 1=, 1, or 1+; addition line 1) or stem rust race 15B-1 (IT 1 or 1+; addition line 2) were selected. Rust tests and examination of chromosome pairing of the F1 hybrids and the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. cylindricum C-genome chromosomes rather than on the D-genome chromosomes. The T. cylindricum chromosome in addition line 2 was determined to be chromosome 4C through the detection of RFLPs among the genomes using a set of homoeologous group-specific wheat cDNA probes. Addition line 1 was resistant to the 10 races of leaf rust and addition line 2 was resistant to the 10 races of stem rust, as was the T. cylindricum parent. The added C-genome chromosomes occasionally paired with hexaploid wheat chromosomes. Translocation lines with rust resistance (2n = 21 II) may be obtained in the self-pollinated progeny of the addition lines through spontaneous recombination of the C-genome chromosomes and wheat chromosomes. Such translocation lines with resistance against a wide spectrum of rust races should be potentially valuable in breeding wheat for rust resistance.  相似文献   

16.
Polyploidy is well recognized as a major force in plant speciation. Among the polyploids in nature, allopolyploids are preponderant and include important crop plants like bread wheat, Triticum aestivum L. (2n = 6x = 42; AABBDD genomes). Allopolyploidy must result through concomitant or sequential events that entail interspecific or intergeneric hybridization and chromosome doubling in the resultant hybrids. To gain insight into the mechanism of evolution of wheat, we extracted polyhaploids of 2 cultivars, Chinese Spring (CS) and Fukuhokomugi (Fuko), of bread wheat by crossing them with maize, Zea mays L. ssp. mays. The derived Ph1-polyhaploids (2n = 3x = 21; ABD) showed during meiosis mostly univalents, which produced first-division restitution (FDR) nuclei that in turn gave rise to unreduced (2n) male gametes with 21 chromosomes. The haploids on maturity set some viable seed. The mean number of seeds per spike was 1.45 +/- 0.161 in CS and 2.3 +/- 0.170 in Fuko. Mitotic chromosome preparations from root tips of the derived plantlets revealed 2n = 42 chromosomes, that is, twice that of the parental polyhaploid, which indicated that they arose by fusion of unreduced male and female gametes formed by the polyhaploid. The Ph1-induced univalency must have produced 2n gametes and hence bilateral sexual polyploidization and reconstitution of disomic bread wheat. These findings highlight the quantum jump by which bread wheat evolved from durum wheat in nature. Thus, bread wheat offers an excellent example of rapid evolution by allopolyploidy. In the induced polyhaploids (ABD) that are equivalent of amphihaploids, meiotic phenomena such as FDR led to regeneration of parental bread wheat, perhaps a simulation of the evolutionary steps that occurred in nature at the time of the origin of hexaploid wheat.  相似文献   

17.
Summary The cytology of bread wheat (Triticum aestivum) suspension lines, recycled lines (selected for high division frequency) and their dividing protoplasts, have been examined. Extensive numerical and structural chromosome variation was present in all the lines. The most frequently observed chromosome numbers were around 2n=32, indicating that considerable chromosome loss from the normal wheat complement (2n=6x=42) had occurred during selection of the lines. Chromosome aberrations also indicated loss of chromosome arms and chromosome segments. The implications of this variation for studies on transformation and for the potential regeneration of whole plants from protoplasts of bread wheat are discussed.  相似文献   

18.
Summary K/Na ratios have been determined in the leaves of salt-treated plants of 14 disomic substitution lines in which each of the D-genome chromosomes replaces the homoeologous A- or B-genome chromosome in the tetraploid wheat variety Langdon (AABB genome). Aneuploid lines of hexaploid bread wheat (cv Chinese Spring) having a reduced or an enhanced complement of chromosome 4D have also been examined. These investigations show that the gene(s) determining K/Na ratios in the leaves of wheat plants grown in the presence of salt is located on the long arm of chromosome 4D.  相似文献   

19.
Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.   总被引:3,自引:0,他引:3  
Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.  相似文献   

20.
Individual plants from the BC1F5 and BC1F6 backcross progenies of barley--wheat (= H. geniculatum All.) (2n = 28) x T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H'L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号