首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following the fusion of synaptic vesicles with the presynaptic plasma membrane of nerve terminals by the process of exocytosis, synaptic-vesicle components are recycled to replenish the vesicle pool. Here we use a pH-sensitive green fluorescent protein to measure the residence time of VAMP, a vesicle-associated SNARE protein important for membrane fusion, on the surfaces of synaptic terminals of hippocampal neurons following exocytosis. The time course of VAMP retrieval depends linearly on the amount of VAMP that is added to the plasma membrane, with retrieval occurring between about 4 seconds and 90 seconds after exocytosis, and newly internalized vesicles are rapidly acidified. These data are well described by a model in which endocytosis appears to be saturable, but proceeds with an initial maximum velocity of about one vesicle per second. We also find that, following exocytosis, a portion of the newly inserted VAMP appears on the surface of the axon.  相似文献   

2.
During sustained action potential (AP) firing at nerve terminals, the rates of endocytosis compared to exocytosis determine how quickly the available synaptic vesicle pool is depleted, in turn influencing presynaptic efficacy. Mechanisms, including rapid kiss-and-run endocytosis as well as local, preferential recycling of docked vesicles, have been proposed as a means to allow endocytosis and recycling to keep up with stimulation. We show here that, for CNS nerve terminals at physiological temperatures, endocytosis is sufficiently fast to avoid vesicle pool depletion during continuous AP firing at 10 Hz. This endocytosis-exocytosis balance persists for turnover of the entire releasable pool of vesicles and allows for efficient escape of FM 4-64, indicating that it is a non-kiss-and-run endocytic event. Thus, under physiological conditions, the sustained speed of vesicle membrane retrieval for the entire releasable pool appears to be sufficiently fast to compensate for exocytosis, avoiding significant vesicle pool depletion during robust synaptic activity.  相似文献   

3.
When the nerves of isolated frog sartorius muscles were stimulated at 10 Hz, synaptic vesicles in the motor nerve terminals became transiently depleted. This depletion apparently resulted from a redistribution rather than disappearance of synaptic vesicle membrane, since the total amount of membrane comprising these nerve terminals remained constant during stimulation. At 1 min of stimulation, the 30% depletion in synaptic vesicle membrane was nearly balanced by an increase in plasma membrane, suggesting that vesicle membrane rapidly moved to the surface as it might if vesicles released their content of transmitter by exocytosis. After 15 min of stimulation, the 60% depletion of synaptic vesicle membrane was largely balanced by the appearance of numerous irregular membrane-walled cisternae inside the terminals, suggesting that vesicle membrane was retrieved from the surface as cisternae. When muscles were rested after 15 min of stimulation, cisternae disappeared and synaptic vesicles reappeared, suggesting that cisternae divided to form new synaptic vesicles so that the original vesicle membrane was now recycled into new synaptic vesicles. When muscles were soaked in horseradish peroxidase (HRP), this tracerfirst entered the cisternae which formed during stimulation and then entered a large proportion of the synaptic vesicles which reappeared during rest, strengthening the idea that synaptic vesicle membrane added to the surface was retrieved as cisternae which subsequently divided to form new vesicles. When muscles containing HRP in synaptic vesicles were washed to remove extracellular HRP and restimulated, HRP disappeared from vesicles without appearing in the new cisternae formed during the second stimulation, confirming that a one-way recycling of synaptic membrane, from the surface through cisternae to new vesicles, was occurring. Coated vesicles apparently represented the actual mechanism for retrieval of synaptic vesicle membrane from the plasma membrane, because during nerve stimulation they proliferated at regions of the nerve terminals covered by Schwann processes, took up peroxidase, and appeared in various stages of coalescence with cisternae. In contrast, synaptic vesicles did not appear to return directly from the surface to form cisternae, and cisternae themselves never appeared directly connected to the surface. Thus, during stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vesicles by way of intermediate cisternae.  相似文献   

4.
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.  相似文献   

5.
The distribution of two synaptic vesicle-specific phosphoproteins, synaptophysin and synapsin I, during intense quantal secretion was studied by applying an immunogold labeling technique to ultrathin frozen sections. In nerve-muscle preparations treated for 1 h with a low dose of alpha-latrotoxin in the absence of extracellular Ca2+ (a condition under which nerve terminals are depleted of both quanta of neurotransmitter and synaptic vesicles), the immunolabeling for both proteins was distributed along the axolemma. These findings indicate that, in the presence of a block of endocytosis, exocytosis leads to the permanent incorporation of the synaptic vesicle membrane into the axolemma and suggest that, under this condition, at least some of the synapsin I molecules remain associated with the vesicle membrane after fusion. When the same dose of alpha-latrotoxin was applied in the presence of extracellular Ca2+, the immunoreactivity patterns resembled those obtained in resting preparations: immunogold particles were selectively associated with the membrane of synaptic vesicles, whereas the axolemma was virtually unlabeled. Under this condition an active recycling of both quanta of neurotransmitter and vesicles operates. These findings indicate that the retrieval of components of the synaptic vesicle membrane is an efficient process that does not involve extensive intermixing between molecular components of the vesicle and plasma membrane, and show that synaptic vesicles that are rapidly recycling still have the bulk of synapsin I associated with their membrane.  相似文献   

6.
Synaptophysin, an integral protein of the synaptic vesicle membrane, and synapsin I, a phosphoprotein associated with the cytoplasmic side of synaptic vesicles, represent useful markers that allow to follow the movements of the vesicle membrane during recycling. The use of antibodies against these proteins to label nerve terminals during experimental treatments which stimulate secretion has provided evidence that during the exo-endocytotic cycle synaptic vesicles transiently fuse with the axolemma, from which they are specifically recovered. When recycling is blocked, exocytosis leads to the permanent incorporation of the synaptic vesicle membrane into the axolemma and to diffusion of the vesicle components in the plane of the membrane.  相似文献   

7.
The recycling of synaptic vesicles in nerve terminals is thought to involve clathrin-coated vesicles. However, the properties of nerve terminal coated vesicles have not been characterized. Starting from a preparation of purified nerve terminals obtained from rat brain, we isolated clathrin-coated vesicles by a series of differential and density gradient centrifugation steps. The enrichment of coated vesicles during fractionation was monitored by EM. The final fraction consisted of greater than 90% of coated vesicles, with only negligible contamination by synaptic vesicles. Control experiments revealed that the contribution by coated vesicles derived from the axo-dendritic region or from nonneuronal cells is minimal. The membrane composition of nerve terminal-derived coated vesicles was very similar to that of synaptic vesicles, containing the membrane proteins synaptophysin, synaptotagmin, p29, synaptobrevin and the 116-kD subunit of the vacuolar proton pump, in similar stoichiometric ratios. The small GTP-binding protein rab3A was absent, probably reflecting its dissociation from synaptic vesicles during endocytosis. Immunogold EM revealed that virtually all coated vesicles carried synaptic vesicle proteins, demonstrating that the contribution by coated vesicles derived from other membrane traffic pathways is negligible. Coated vesicles isolated from the whole brain exhibited a similar composition, most of them carrying synaptic vesicle proteins. This indicates that in nervous tissue, coated vesicles function predominantly in the synaptic vesicle pathway. Nerve terminal-derived coated vesicles contained AP-2 adaptor complexes, which is in agreement with their plasmalemmal origin. Furthermore, the neuron-specific coat proteins AP 180 and auxilin, as well as the alpha a1 and alpha c1-adaptins, were enriched in this fraction, suggesting a function for these coat proteins in synaptic vesicle recycling.  相似文献   

8.
A unified theory of presynaptic chemical neurotransmission   总被引:2,自引:0,他引:2  
The mechanism of neurotransmission and its modulation involves the direct role of calcium on membranes, and calcium's ability to activate synergistically and simultaneously a host of interdependent enzymatic cascades in synaptic and coated vesicles and the presynaptic plasma membrane. Enzymatic products formed can either amplify or depress synaptic vesicle exocytosis and synaptic vesicle regeneration via the coated pit/vesicle system. Rate amplification produced by a series of parallel, multistepped, interconnected enzymatic cascades as well as the optimal geometric spatial orientation of synaptic vesicles induced by presynaptic structures is hypothesized to explain how neurotransmitter is released within 200 musec upon calcium entry into the axon terminal.  相似文献   

9.
Intact neurons in cultures of fetal rodent spinal cord explants show stimulation-dependent uptake of horseradish peroxidase (HRP) into many small vesicles and occasional tubules and multivesicular bodies (MVB) at presynaptic terminals. Presynaptic terminals were allowed to take up HRP during 1 h of strychnine-enhanced stimulation of synaptic transmitter release and then "chased" in tracer-free medium either with strychnine or with 10 mM Mg++ which depresses transmitter release. Tracer-containing vesicles are lost from terminals under both chase conditions; the loss is more rapid (4-8 h) with strychnine than with 10 mM Mg++ (8-16 h). There is a parallel decrease in the numbers of labeled MVB's at terminals. Loss of tracer with 10 mM Mg++ does not appear to be due to the membrane rearrangements (exocytosis coupled to endocytosis) that presumably lead to initial tracer uptake; terminals exposed to HRP and Mg++ for up to 16 h show little tracer uptake into vesicles. Nor is the decrease likely to the due to loss of HRP enzyme activity; HRP is very stable in solution. During the chases there is a striking accumulation of HRP in perikarya that is far more extensive in cultures initially exposed to tracer with strychnine than 10 mM Mg++ regardless of chase conditions. Much of the tracer ends up in large dense bodies. These findings suggest that synaptic vesicle membrane turnover involves retrograde axonal transport of membrane to neuronal perikarya for further processing, including lysosomal degradation. The more rapid (4-8 h) loss of tracer-containing vesicles with strychnine may reflect vesicle membrane reutilization for exocytosis.  相似文献   

10.
Synaptic vesicles need to be mobile to reach their release sites during synaptic activity. We investigated vesicle mobility throughout the synaptic vesicle cycle using both conventional and subdiffraction-resolution stimulated emission depletion fluorescence microscopy. Vesicle tracking revealed that recently endocytosed synaptic vesicles are highly mobile for a substantial time period after endocytosis. They later undergo a maturation process and integrate into vesicle clusters where they exhibit little mobility. Despite the differences in mobility, both recently endocytosed and mature vesicles are exchanged between synapses. Electrical stimulation does not seem to affect the mobility of the two types of vesicles. After exocytosis, the vesicle material is mobile in the plasma membrane, although the movement appears to be somewhat limited. Increasing the proportion of fused vesicles (by stimulating exocytosis while simultaneously blocking endocytosis) leads to substantially higher mobility. We conclude that both high- and low-mobility states are characteristic of synaptic vesicle movement.  相似文献   

11.
The recycling of synaptic vesicles in nerve terminals involves multiple steps, underlies all aspects of synaptic transmission, and is a key to understanding the basis of synaptic plasticity. The development of styryl dyes as fluorescent molecules that label recycling synaptic vesicles has revolutionized the way in which synaptic vesicle recycling can be investigated, by allowing an examination of processes in neurons that have long been inaccessible. In this review, we evaluate the major aspects of synaptic vesicle recycling that have been revealed and advanced by studies with styryl dyes, focussing upon synaptic vesicle fusion, retrieval, and trafficking. The greatest impact of styryl dyes has been to allow the routine visualization of endocytosis in central nerve terminals for the first time. This has revealed the kinetics of endocytosis, its underlying sequential steps, and its regulation by Ca2+. In studies of exocytosis, styryl dyes have helped distinguish between different modes of vesicle fusion, provided direct support for the quantal nature of exocytosis and endocytosis, and revealed how the probability of exocytosis varies enormously from one nerve terminal to another. Synaptic vesicle labelling with styryl dyes has helped our understanding of vesicle trafficking by allowing better understanding of different synaptic vesicle pools within the nerve terminal, vesicle intermixing, and vesicle clustering at release sites. Finally, the dyes are now being used in innovative ways to reveal further insights into synaptic plasticity.  相似文献   

12.
Visualization of actin dynamics during macropinocytosis and exocytosis   总被引:5,自引:1,他引:4  
Macropinocytosis of newly formed resides and exocytosis of post-lysosomes have been visualized using a green fluorescent protein probe that binds specifically to F-actin filaments. F-actin association with macropinocytosis begins as a V-shaped infolding of the membrane. Vesicle enlargement occurs through an inward movement of the proximal point of the V as well as an outward protrusion at the tip of the V to form an elongated invagination. The protrusion eventually closes at its distal margin to become a vesicle and is moved centripetally while recovering its circular shape. The vesicle loses its actin coat within 1 min after internalization. One hour later, post-lysosomal vesicles became weakly surrounded by actin while still cytoplasmic. Some of these vesicles moved to the plasma membrane, docked, and then expelled their contents. Slightly before the vesicle content began to disappear, an increase in F-actin association with the vesicle was observed. This was followed by rapid contraction of the vesicle and then disappearance of the actin signal once the internal content was released. These results show that dynamic changes in actin filament association with the vesicle membrane accompany both endocytosis and exocytosis.  相似文献   

13.
《The Journal of cell biology》1996,133(6):1237-1250
Strong evidence implicates clathrin-coated vesicles and endosome-like vacuoles in the reformation of synaptic vesicles after exocytosis, and it is generally assumed that these vacuoles represent a traffic station downstream from clathrin-coated vesicles. To gain insight into the mechanisms of synaptic vesicle budding from endosome-like intermediates, lysed nerve terminals and nerve terminal membrane subfractions were examined by EM after incubations with GTP gamma S. Numerous clathrin-coated budding intermediates that were positive for AP2 and AP180 immunoreactivity and often collared by a dynamin ring were seen. These were present not only on the plasma membrane (Takei, K., P.S. McPherson, S.L.Schmid, and P. De Camilli. 1995. Nature (Lond.). 374:186-190), but also on internal vacuoles. The lumen of these vacuoles retained extracellular tracers and was therefore functionally segregated from the extracellular medium, although narrow connections between their membranes and the plasmalemma were sometimes visible by serial sectioning. Similar observations were made in intact cultured hippocampal neurons exposed to high K+ stimulation. Coated vesicle buds were generally in the same size range of synaptic vesicles and positive for the synaptic vesicle protein synaptotagmin. Based on these results, we suggest that endosome-like intermediates of nerve terminals originate by bulk uptake of the plasma membrane and that clathrin- and dynamin-mediated budding takes place in parallel from the plasmalemma and from these internal membranes. We propose a synaptic vesicle recycling model that involves a single vesicle budding step mediated by clathrin and dynamin.  相似文献   

14.
Endocytosis at ribbon synapses   总被引:1,自引:0,他引:1  
Unlike conventional synaptic terminals that release neurotransmitter episodically in response to action potentials, neurons of the visual, auditory and vestibular systems encode sensory information in graded signals that are transmitted at their synapses by modulating the rate of continuous release. The synaptic ribbon, a specialized structure found at the active zones of these neurons, is necessary to sustain the high rates of exocytosis required for continuous release. To maintain the fidelity of synaptic transmission, exocytosis must be balanced by high-capacity endocytosis, to retrieve excess membrane inserted during vesicle fusion. Capacitance measurements following vesicle release in ribbon-type neurons indicate two kinetically distinct phases of compensatory endocytosis, whose relative contributions vary with stimulus intensity. The two phases can be independently regulated and may reflect different underlying mechanisms operating on separate pools of recycling vesicles. Electron microscopy shows diversity among ribbon-type synapses in the relative importance of clathrin-mediated endocytosis versus bulk membrane retrieval as mechanisms of compensatory endocytosis. Ribbon synapses, like conventional synapses, make use of multiple endocytosis pathways to replenish synaptic vesicle pools, depending on the physiological needs of the particular cell type.  相似文献   

15.
Exocytosis, the fusion of secretory vesicles with the plasma membrane to allow release of the contents of the vesicles into the extracellular environment, and endocytosis, the internalization of these vesicles to allow another round of secretion, are coupled. It is, however, uncertain whether exocytosis and endocytosis are tightly coupled, such that secretory vesicles fuse only transiently with the plasma membrane before being internalized (the 'kiss-and-run' mechanism), or whether endocytosis occurs by an independent process following complete incorporation of the secretory vesicle into the plasma membrane. Here we investigate the fate of single secretory vesicles after fusion with the plasma membrane by measuring capacitance changes and transmitter release in rat chromaffin cells using the cell-attached patch-amperometry technique. We show that raised concentrations of extracellular calcium ions shift the preferred mode of exocytosis to the kiss-and-run mechanism in a calcium-concentration-dependent manner. We propose that, during secretion of neurotransmitters at synapses, the mode of exocytosis is modulated by calcium to attain optimal conditions for coupled exocytosis and endocytosis according to synaptic activity.  相似文献   

16.
Roos J  Kelly RB 《Current biology : CB》1999,9(23):1411-1414
In most models of endocytosis, the endocytic machinery is recruited from the cytoplasm by cytoplasmic tails of the plasma membrane proteins that are to be internalized. This does not appear to be true at synapses where the endocytic machinery required for synaptic vesicle recycling is localized to membrane-associated 'hot spots' [1] [2]. In Drosophila neuromuscular junctions, the multi-domain protein Dap160 is also localized to hot spots [3] and has some characteristics expected of an anchoring protein. Anchoring the endocytic machinery to the plasma membrane might help contribute to the remarkable speed of synaptic vesicle recycling [4]. Here, we report that the endocytic machinery surrounds sites that are believed to be sites of exocytosis. We propose that the radial distribution of the synaptic vesicle recycling machinery already present on the plasma membrane in unstimulated nerve terminals is a fundamental unit of pre-synaptic organization and allows the nerve terminal to extract maximum recycling efficiency out of conventional endocytic machinery.  相似文献   

17.
Streamlined synaptic vesicle cycle in cone photoreceptor terminals   总被引:8,自引:0,他引:8  
Rea R  Li J  Dharia A  Levitan ES  Sterling P  Kramer RH 《Neuron》2004,41(5):755-766
Cone photoreceptors tonically release neurotransmitter in the dark through a continuous cycle of exocytosis and endocytosis. Here, using the synaptic vesicle marker FM1-43, we elucidate specialized features of the vesicle cycle. Unlike retinal bipolar cell terminals, where stimulation triggers bulk membrane retrieval, cone terminals appear to exclusively endocytose small vesicles. These retain their integrity until exocytosis, without pooling their membranes in endosomes. Endocytosed vesicles rapidly disperse through the terminal and are reused with no apparent delay. Unlike other synapses where most vesicles are immobilized and held in reserve, only a small fraction (<15%) becomes immobilized in cones. Photobleaching experiments suggest that vesicles move by diffusion and not by molecular motors on the cytoskeleton and that vesicle movement is not rate limiting for release. The huge reservoir of vesicles that move rapidly throughout cone terminals and the lack of a reserve pool are unique features, providing cones with a steady supply for continuous release.  相似文献   

18.
The synaptic vesicle cycle encompasses the pre-synaptic events that drive neurotransmission. Influx of calcium leads to the fusion of synaptic vesicles with the plasma membrane and the release of neurotransmitter, closely followed by endocytosis. Vacated release sites are repopulated with vesicles which are then primed for release. When activity is intense, reserve vesicles may be mobilized to counteract an eventual decline in transmission. Recently, interplay between endocytosis and repopulation of the readily releasable pool of vesicles has been identified. In this study, we show that exo-endocytosis is necessary to enable detachment of synapsin from reserve pool vesicles during synaptic activity. We report that blockage of exocytosis in cultured mouse hippocampal neurons, either by tetanus toxin or by the deletion of munc13, inhibits the activity-dependent redistribution of synapsin from the pre-synaptic terminal into the axon. Likewise, perturbation of endocytosis with dynasore or by a dynamin dominant-negative mutant fully prevents synapsin redistribution. Such inhibition of synapsin redistribution occurred despite the efficient phosphorylation of synapsin at its protein kinase A/CaMKI site, indicating that disengagement of synapsin from the vesicles requires exocytosis and endocytosis in addition to phosphorylation. Our results therefore reveal hitherto unidentified feedback within the synaptic vesicle cycle involving the synapsin-managed reserve pool.  相似文献   

19.
Amphiphysin is a protein enriched at mammalian synapses thought to function as a clathrin accessory factor in synaptic vesicle endocytosis. Here we examine the involvement of amphiphysin in synaptic vesicle recycling at the giant synapse in the lamprey. We show that amphiphysin resides in the synaptic vesicle cluster at rest and relocates to sites of endocytosis during synaptic activity. It accumulates at coated pits where its SH3 domain, but not its central clathrin/AP-2-binding (CLAP) region, is accessible for antibody binding. Microinjection of antibodies specifically directed against the CLAP region inhibited recycling of synaptic vesicles and caused accumulation of clathrin-coated intermediates with distorted morphology, including flat patches of coated presynaptic membrane. Our data provide evidence for an activity-dependent redistribution of amphiphysin in intact nerve terminals and show that amphiphysin is a component of presynaptic clathrin-coated intermediates formed during synaptic vesicle recycling.  相似文献   

20.
Cytochalasin D was found to reduce the endocytosis of ricin and the fluid phase markers [14C]sucrose and Lucifer Yellow in Vero cells without reducing the uptake of transferrin. The number of coated pits at the plasma membrane was not affected by the treatment. Cytochalasin D also reduced the endocytosis of ricin in cells where uptake of transferrin from coated pits was blocked by low cytosolic pH. Colchicine had a similar effect as cytochalasin D. Both drugs inhibited the exocytosis of ricin from the cells, and they reduced the rate by which ricin intoxicated the cells. Cytochalasin D had essentially no effect on the ability of the cells to bind transferrin, whereas colchicine reduced the binding to some extent. Epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) increased the endocytic uptake of ricin in A431 cells both under normal culture conditions and when the coated pit/coated vesicle pathway was blocked by acidification of the cytosol. In contrast, EGF and TPA had no stimulatory effect on the uptake of transferrin at normal cytoplasmic pH, and they did not abolish the ability of low cytoplasmic pH to inhibit endocytic uptake of transferrin. The results indicate that cytochalasin D and colchicine selectively inhibit endocytic uptake from non-clathrin-coated areas of the cell membrane whereas EGF and TPA stimulate it. The data support the view that there are different endocytic mechanisms, and they indicate that at least in some cell types the non-clathrin-coated endocytosis can be modulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号